Sets, relations, functions, simplest combinatorial formulas

Lections 1-2

Sets

- It is useful to have a way of describing a collection of "things" and the mathematical name for such a collection is a set
- Any well defined collection of items
- The collection of colors \{Red, Blue, Green\} is a set we might call \boldsymbol{A} and write as $\boldsymbol{A}=\{$ Red, Blue, Green\}
- The items in a set- the elements of the set
- Order of elements is meaningless
$\{1,2,3\}$ is the same as $\{3,2,1\}$
- It does not matter how often the same element is listed
- $\mathbf{a} \in \mathbf{A}$
"a is an element of A"
"a is a member of A "
- $\mathbf{a} \notin \mathbf{A}$
- $\mathbf{A}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right\} \quad$ "A contains..."

Examples

- Empty set- $\boldsymbol{A}=\varnothing$
- $\boldsymbol{N}=\{0,1,2,3, \ldots\}$ - the set of integers.
- $Z=\{\ldots,-3,-2,-2, o, 1,2,3, \ldots\}$
- $\boldsymbol{Q}=$ the set of fractions
- $\boldsymbol{R}=$ the set of real numbers
- The set that contains everything -the universal set written $\boldsymbol{S}, \boldsymbol{U}$, or $\boldsymbol{\Omega}$
- We will write $\sim \boldsymbol{A}$ when we mean the set of things which are not in \boldsymbol{A}

Subsets

: If the set \boldsymbol{B} contains all the elements in the set \boldsymbol{A} together with some others then we write $\boldsymbol{A} \subset \boldsymbol{B}$ \boldsymbol{A} is a subset of \boldsymbol{B}
\{Matthew, Mark, Luke, John $\} \subset\{$ Matthew, Mark, Luke, John, Thomas\}

- $\mathbf{A} \subset \mathbf{B}$ is the same as $\mathbf{B} \supset \mathbf{A}$
- if $\mathrm{a} \in \mathbf{A}$ then $\mathrm{a} \in \mathbf{B}$ or

$$
\mathrm{a} \in \mathbf{A} \Rightarrow \mathrm{a} \in \mathbf{B}
$$

- If B is a subset but might possibly be the same as A then we use $\mathbf{A} \subseteq \mathbf{B}$
- $\mathbf{A}=\mathbf{B}-\mathbf{A}$ contains exactly the same things as \mathbf{B}
- if $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{B} \subseteq \mathbf{A}$ then $\mathbf{A}=\mathbf{B}$

$$
(\mathrm{A} \subseteq \mathrm{~B}) \cap(\mathrm{B} \subseteq \mathrm{~A}) \Rightarrow \mathrm{A}=\mathrm{B}
$$

- $\varnothing \subseteq \mathbf{A}$ for any set \mathbf{A}

The power set and the cardinality

$: \mathbf{P}(\mathbf{A})$ or 2^{A} is the set of all subset of \mathbf{A}
$\mathbf{A}=\{$ Matthew, Mark, Luke $\}$ then $\mathbf{P}(\mathbf{A})$ consist of
\{Matthew, Mark, Luke\}
\{Matthew, Mark\}
\{Matthew, Luke\}
\{Mark, Luke\}
\{Mathew\}
\{Mark\}
\{Luke\}
\{...\}

- The number of element in a set \mathbf{A}-the cardinality of \mathbf{A} and written ||A||
if $\mathbf{A}=\{$ Matthew, Mark, Luke, John\} then $\|\mathbf{A}\|=4$

Venn Diagrams and Manipulating Sets

- We can think of the universal set \mathbf{S} as a rectangle and a set, say \mathbf{A} as the interior of the circle drawn in \mathbf{S}

- The speckled area is A, while the remainder of the area of the rectangle is $\sim \mathbf{A}$
- A together with $\sim \mathbf{A}$ make up \mathbf{S}

Intersection

- We can write the set of items that belong to both the set \mathbf{A} and the set \mathbf{B} as $\mathbf{A} \cap \mathbf{B}$. Formally $(x \in \mathbf{A}) \cap(x \in \mathbf{B})=>(x \in \mathbf{A} \cap \mathbf{B})$
- We call this a intersection of \mathbf{A} and \mathbf{B} or, less formally, A and B
- In terms of the Venn diagram in figure the two circles represent \mathbf{A} and \mathbf{B} while the overlap (in black) is the intersection

Union

- We can write the set of items that belong to the set \mathbf{A} or the set \mathbf{B} or to the both as $\mathbf{A} \cup \mathbf{B}$

$$
(\mathrm{x} \in \mathbf{A}) \cup(\mathrm{x} \in \mathbf{B}) \Longrightarrow(\mathrm{x} \in \mathbf{A} \cup \mathbf{B})
$$

- We call this union of A and B or, less formally, \mathbf{A} or B
- Venn diagrams of set $\mathbf{A} \cup \mathbf{B}$ (blue) and universal set S

- Commutative laws
- Associative laws
- Distributive laws
- DeMorgan's laws
- Complement laws
- Double complement law
- Idempotent laws
- Absorption laws
- Dominance laws
- Identity laws
$A \cap B=B \cap A \quad A \cup B=B \cup A$ $A \cup(B \cup C)=(A \cup B) \cup C$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}} \quad \overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cap \overline{\mathrm{B}}$
$A \cap \bar{A}=\emptyset \quad A \cup \bar{A}=U$
$\overline{\overline{\mathrm{A}}}=\mathrm{A}$
$\mathrm{A} \cup \mathrm{A}=\mathrm{A} \mathrm{A} \cap \mathrm{A}=\mathrm{A}$
$A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$
$A \cap \emptyset=\varnothing \mathrm{A} \cup \mathrm{U}=\mathrm{U}$
$\mathrm{A} \cup \emptyset=\mathrm{A} \mathrm{A} \cap \mathrm{U}=\mathrm{A}$

Cartesian Product

- We define the Cartesian Product $\mathbf{P}=\mathbf{A} \times \mathbf{B}$ to be the set of ordered pairs (a, b) where $\mathrm{a} \in \mathbf{A}$ and $\mathrm{b} \in \mathbf{B}$

$$
\mathbf{P}=\{(\mathrm{a}, \mathrm{~b}):(\mathrm{a} \in \mathbf{A}) \cap(\mathrm{b} \in \mathbf{B})\}
$$

$$
\begin{gathered}
\mathbf{A}=\{\mathrm{a}, \mathrm{~b}\} \text { and } \mathbf{B}=\{1,2\} \text { then } \\
\mathbf{A} \times \mathbf{B}=\{(\mathrm{a}, 1),(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{b}, 2)\}
\end{gathered}
$$

Relations

\& Given two sets \mathbf{A} and \mathbf{B} and the product $\mathbf{A} \times \mathbf{B}$ we define the relation between \mathbf{A} and \mathbf{B} as a subset \mathbf{R} of $\mathbf{A} \times \mathbf{B}$

- $a \in \mathbf{A}$ and $b \in \mathbf{B}$ are related if $(a, b) \in \mathbf{R}$, more commonly written aRb
- Take the simple example of $\mathbf{A}=\{1,2,3,4,5,6\}$ and $\mathbf{B}=\{1,2,3,4,5,6\}$ then $\mathrm{A} \times \mathrm{B}$ is the array

$$
\begin{aligned}
& (1,1)(1,2)(1,3)(1,4)(1,5)(1,6) \\
& (2,1)(2,2)(2,3)(2,4)(2,5)(2,6) \\
& (3,1)(3,2)(3,3)(3,4)(3,5)(3,6) \\
& (4,1)(4,2)(4,3)(4,4)(4,5)(4,6) \\
& (5,1)(5,2)(5,3)(5,4)(5,5)(5,6) \\
& (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
\end{aligned}
$$

- A relation \mathbf{R} is the subset $\{(1,1),(2,2),(3,3)$, $(4,4),(5,5),(6,6)\}$ or the set $\{(i, j): i=j\}$
- Other example:
$\mathbf{R}=\{(\mathrm{i}, \mathrm{j}): \mathrm{i}+\mathrm{j}=8\}=((2,6),(3,5),(4,4),(5,3),(6,2)\}$

Draw the graphical representation of the relation 'less than' on $\{1,2,3,4\}$.

Write down the relation matrix for the relation
1
2
3
4 $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\ \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\ \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\ \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F}\end{array}\right]$

- reflexive: for all $x \in \mathbf{X}$ it follows that $x \mathbf{R} x$ "greater than or equal to" is a reflexive relation but "greater than" is not
- symmetric: for all x and y in \mathbf{X} it follows that if $x \mathbf{R} y$ then $y \mathbf{R} x$
"Is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x
- antisymmetric: for all x and y in \mathbf{X} it follows that if $x \mathbf{R} y$ and $y \mathbf{R} x$ then $x=y$
"Greater than or equal to" is an antisymmetric relation, because if $x y$ and $y x$, then $x=y$
- asymmetric: for all x and y in \mathbf{X} it follows that if $x \mathbf{R} y$ then not $y \mathbf{R} x$
- "Greater than" is an asymmetric relation, because if $x>y$ then not $y>x$
- transitive: for all x, y and z in \mathbf{X} it follows that if $x \mathbf{R} y$ and $y \mathbf{R} z$ then $x \mathbf{R} z$
- "Is an ancestor of" is a transitive relation, because if x is an ancestor of y and y is an ancestor of z, then x is an ancestor of z
- Euclidean: for all x, y and z in \mathbf{X} it follows that if $x \mathbf{R} y$ and $x \mathbf{R} z$, then $y \mathbf{R} z$
- A relation which is reflexive, symmetric and transitive is called an equivalence relation

Partial order relation

Definition: A relation is a partial order relation if it is reflexive, antisymmetric and transitive
Here are some examples of partial order relations:

- The relation \leq on the set of real numbers
- The relation \subseteq on the power set of a set
- The relation 'is divisible by' on the set of natural numbers
- The relation 'is a subexpression of' on the set of logical expressions (with a given set of variables)

Functions

- two sets \mathbf{X} and \mathbf{Y} and also a rule which assigns to every $x \in \mathbf{X}$ a UNIQUE value $y \in \mathbf{Y}$
- We will call the rule \mathbf{f} and say that for each x there is a $y=\mathbf{f}(\mathrm{x})$ in the set \mathbf{Y}
- the critical point is that for each x there is a unique value y

$$
\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}
$$

- We can think of the pairs (x, y) or more clearly ($\mathrm{x}, \mathrm{f}(\mathrm{x})$)

- \mathbf{X} is called the domain of f, \mathbf{Y} is the codomain
- Examples

$\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}$

- $\mathrm{f}(\mathrm{x})=2^{x}$ where $\mathrm{X}=\{\mathrm{x}: 0 \leq \mathrm{x}<\infty\}$ and $\mathrm{Y}=\{\mathrm{y}: 0 \leq \mathrm{y}<\infty\}$
- $\mathrm{f}(\mathrm{x})=\sqrt{x}$ where $\mathrm{X}=\{\mathrm{x}: 0 \leq \mathrm{x}<\infty\}$ and $\mathrm{Y}=\{\mathrm{y}: 0 \leq \mathrm{y}<\infty\}$
- $f(x)=\sin ^{-1}(x)$ where $X=\left\{-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right\}$ and $Y=\{-1 \leq$ $y \leq 1\}$
- There may be some points in \mathbf{Y} (the codomain) which cannot be reached by function f
- If we take all the points in \mathbf{X} and apply \mathbf{f} we get a set $\mathbf{R}=\{\mathbf{f}(\mathrm{x}): \mathrm{x} \in \mathbf{X}\}$ which is the range of the function \mathbf{f}. Notice \mathbf{R} is a subset of \mathbf{Y} i.e. $\mathbf{R} \subset \mathbf{Y}$

Surjections

- Surjections (or onto functions): for every y in the codomain there is an x in the domain such that $\boldsymbol{f}(x)=y$
- codomain is bigger than the range of the function
- If the range and codomain are the same then out function is a surjection

This means every y has a corresponding x for which $y=f(x)$

Injection

- Another important kind of function is the injection (or one-to-one function), which have the property that $\mathrm{x} 1=\mathrm{x} 2$ then y 1 must equal y 2

An 1 to 1 function

not a function

Bijections

- Lastly we call functions bijections, when they are both one-to-one and onto
- Example:

$$
f: \mathbf{X} \rightarrow \mathbf{Y}
$$

$\mathrm{f}(\mathrm{x})=2^{X}, \mathbf{X}=\{\mathrm{x}: 0 \leq x<\infty\}, \mathbf{Y}=\{\mathrm{y}:-\infty<y<\infty\}$. The range of the function is $\mathrm{R}=\{\mathrm{y}: 0 \leq y<\infty\}$ while the codomain Y has negative values which we cannot reach using our function

Composition of functions

- The composition of two or more functions uses the output of one function \boldsymbol{f}, as the input of another \boldsymbol{g}
- The functions $\boldsymbol{f}: \mathbf{X} \rightarrow \mathbf{Y}$ and $\boldsymbol{g}: \mathbf{Y} \rightarrow \mathbf{Z}$ can be composed by applying \boldsymbol{f} to an argument x to obtain $y=\boldsymbol{f}(x)$ and then applying \boldsymbol{g} to y to obtain $z=\boldsymbol{g}(y)$
- The composite function formed in this way from \boldsymbol{f} and \boldsymbol{g} can be written $\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}))$ or $\boldsymbol{g} \circ \boldsymbol{f}$

Definition: Let $\boldsymbol{f}: \mathbf{A} \rightarrow \mathbf{B}$ and $\boldsymbol{g}: \mathbf{B} \rightarrow \mathbf{C}$ be functions. The composite function of \boldsymbol{f} and \boldsymbol{g} is the function:

$$
\boldsymbol{g} \circ \boldsymbol{f}: \mathbf{A} \rightarrow \mathbf{C}(\boldsymbol{g} \circ \boldsymbol{f})(\mathrm{x})=\boldsymbol{g}(\boldsymbol{f}(x))
$$

- Using composition we can construct complex functions from simple ones

Composition of two functions f and g

Let $f: R \rightarrow R, f(x)=x^{2}$ and $g: R \rightarrow R, g(x)=3 x-1$. Find $f \circ g$ and $g \circ f$

- Definition: Let \mathbf{A} be a set. The identity function on \mathbf{A} is the function:

$$
\boldsymbol{i}: \mathbf{A} \rightarrow \mathbf{A}, \boldsymbol{i}(x)=x
$$

- Definition: Let $\boldsymbol{f}: \mathbf{A} \rightarrow \mathbf{B}$ and $\boldsymbol{g}: \mathbf{B} \rightarrow \mathbf{A}$ be functions. If $\boldsymbol{g} \circ \boldsymbol{f}: \mathbf{A} \longrightarrow \mathbf{A}$ is the identity function on \boldsymbol{A}, and if $\boldsymbol{f} \circ \boldsymbol{g}: \mathbf{B} \rightarrow \mathbf{B}$ is the identity function on \mathbf{B}, then \boldsymbol{f} is the inverse of \boldsymbol{g} (and \boldsymbol{g} is the inverse of \boldsymbol{f})
- Theorem: A function \boldsymbol{f} has an inverse if and only if \boldsymbol{f} is onto and one-to-one
- $\boldsymbol{f}, \boldsymbol{g}$ for which $x=\boldsymbol{g}(\boldsymbol{f}(x))$ - \boldsymbol{g}-inverse function
- Not all functions have inverses, in fact there is an inverse \boldsymbol{g} written $\boldsymbol{f}^{-\mathbf{1}}$ if and only if \boldsymbol{f} is bijective
- $x=\boldsymbol{f}^{-1}(\boldsymbol{f}(x))=\boldsymbol{f}\left(\boldsymbol{f}^{-1}(x)\right)$
$f(x)=x^{2}, \mathrm{~g}(\mathrm{y})=1 / \mathrm{y}$ then $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\frac{1}{x^{2}}$.
We of course have to take care about the definition if the range and the domain to avoid $x=0$

The inverse f and $g=f^{-1}$

Simplest combinatorial formulas

- The principle of inclusion and exclusion:

$$
|\mathbf{A} \cup \mathbf{B}|=|\mathbf{A}|+|\mathbf{B}|-|\mathbf{A} \cap \mathbf{B}|
$$

- if the cardinalities of \mathbf{A} and \mathbf{B} are added, then the elements in $\mathbf{A} \cap \mathbf{B}$ will be counted twice, so this is corrected for by subtracting the cardinality of $\mathbf{A} \cap \mathbf{B}$

$$
\|\mathbf{A} \cup \mathbf{B}\|=\|\mathbf{A}\|+\|\mathbf{B}\|-\|\mathbf{A} \cap \mathbf{B}\|
$$

- For 3 sets
$\|\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}\|=\|\mathbf{A}\|+\|\mathbf{B}\|+\|\mathbf{C}\|-\|\mathbf{A} \cap \mathbf{B}\|-$ $\|\mathbf{B} \cap \mathbf{C}\|-\|\mathbf{A} \cap \mathbf{C}\|+\|\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}\|$

Multiplication principle

- If a selection process consists of n steps, where the selection in the first step can be done in k_{1} ways, the selection in the second step can be done in k_{2} ways, and so on, then the total number of possible selections is $k_{1} k_{2} \ldots k_{n}$

Permutations

- Suppose I have n distinct items and I want to arrange them in a line. I can do this in $n \times(n-1) \times(n-2) \times(n-3) \times \cdots \times 3 \times 2 \times 1$

$$
=n!
$$

- $1!=0$ and $0!=1$

$$
3!=3 \times 2 \times 1=6,5!=5 \times 4 \times 3 \times 2 \times 1=120
$$

Suppose we want to select \boldsymbol{r} elements from a set with \boldsymbol{n} elements (where $\boldsymbol{n}>\boldsymbol{r}$), and arrange those \boldsymbol{r} elements in a particular order. In how many ways can this be done?

$$
n_{p_{r}}=\frac{n!}{(n-r)!}
$$

Suppose we have n objects and

- there are n_{1} of type 1
- n_{2} of the type 2
-
- n_{k} of type k
the total number of items in n, so

$$
\begin{aligned}
& n=n_{1}+n_{2}+\ldots+n_{k} \text { then there are } \\
& \qquad \frac{n!}{n_{1}!n_{2}!n_{3}!\ldots n_{k}!}
\end{aligned}
$$

possible arrangements

Examples

- 3 white, 4 red and 4 black balls. They can be arranged in a row in

$$
\frac{11!}{3!4!4!}=11550 \text { possible ways }
$$

- while the letters in WALLY can be arranged in

$$
\frac{5!}{2!1!1!1!}=60 \text { ways }
$$

Combinations

- The number of ways of picking k items from a group of size n is written $\binom{n}{k}$ or (for the traditionalists) C_{k}^{n}

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

- So the number of ways of picking 5 students from a group of 19 is

$$
\binom{19}{5}=\frac{19!}{(14)!5!}=\frac{19 \times 18 \times 17 \times 16}{4 \times 3 \times 2 \times 2}
$$

