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Euler’s formula for intersecting sets
Formula of inclusions and exclusions 

for two sets

• Formula of inclusions and exclusions allows us to find 
capacity of combining different sets if we know the 
power of their intersections.

• The following formula for the cardinality of the union of
two sets is known as the Principle of inclusion and
exclusion:



• The formula is derived from the fact that if the
cardinalities of A and B are added, then the elements in

will be counted twice, so this is corrected by
subtracting the cardinality of .

Venn diagram of                ( speckled ) and universal set S



Formula of inclusions and exclusions 
for three sets

|A B C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |A∩C| + |A∩B∩C| (2)

• Let x be an element of A B C. As such, it's counted once 
in the left-hand side of equality. x may belong to 1, 2, or 
3 sets A, B, C. Assume it belongs only to A. Then on the 
right of (2) it is counted only once in |A|.

• Let x belong to A and B. On the right, it is counted in |A|, 
|B|, and |A∩B| - twice added, once subtracted.

• Lastly, let x belong to all three sets A, B, C. It is then 
counted in every term of (2) - 4 times added and 3 times 
subtracted - again adding up to 1.



Formula of inclusions and exclusions 
for n sets

• In the more general case where there are n different
sets Ai, the formula for the Inclusion-Exclusion Principle
becomes:

• On the left there is a number of elements in the union
of n sets.

• On the right, we first count elements in each of the sets
separately and add the up. If the sets Ai are disjoint,
some elements will have be counted more than once.

• Those are the elements that belong to at least two of the
sets Ai, or the intersections Ai∩Aj. We wish to consider
every such intersection, but each only once. Since Ai ∩
Aj = Aj∩ Ai, to avoid duplications we arbitrarily decide to
consider only pairs (Ai, Aj) with i < j.



• When we subtract the sum of the number of elements in 
such pairwise intersections, some elements may have 
been subtracted more than once. Those are the elements 
that belong to at least three of the sets Ai. We add the 
sum of the elements of intersections of the sets taken 
three at a time. (The condition i < j < k assures that every 
intersection is counted only once.)

• The process goes on with sums being alternately added 
or subtracted until we come to the last term - the 
intersection of all sets Ai. Whether it's added or 
subtracted depends on n: for n =2 it was subtracted, 
for n = 3 added.



Examples

• Example 1: In a group of 120 students studying 
computing, 84 can program in C and 66 can program in 
Java. If 45 can program in both C and Java, how many of 
the students cannot program in either of these 
languages?
Solution :
Let ={computing students}, C= {C programming 
students},and J= {Java  programming students}. The 
Problem is to find               . By the Principle of inclusion 
and exclusion:
|C J|=|C|+|J|-|C∩J| = 84 + 66 – 45 = 105
Therefore              = 120-105=15.
There are 15 students who cannot program in either of 
these languages.



• Example 2: How many integers from 1 to 100 are
multiples of 2 or 3?
Solution:
Let A be the set of integers from 1 to 100 that are
multiples of 2 ( |A|=50).
Let В be the set of integers from 1 to 100 that are
multiples of 3 (|B| = 33).
If А ∩ В the set of integers from 1 to 100 that are
multiples of both 2 and 3, hence are multiples of 6
(|A ∩ B| = 16).
|A B|=|A|+|B|-|A B|=50 + 33 - 16 – 67



• Example 3: What is the sum of all integers from 1 to 
100 that are multiples of 2 or 3? 
Solution:
While PIE is often used to count the elements of a set, if 
we remove the | | symbols, the statement is still true. For 
example, in two variables, A B = A B - A∩B. The same 
proof using Venn diagrams works to show that each 
element is included once.
As such, the sum of elements in A B is equal to the sum 
of elements in A plus the sum of elements in B minus the 
sum of elements in  A∩B. Letting A be the set of 
multiples of 2, and B be the set of multiples of 3, then 
A∩B is the set of multiples of 6, hence the sum of A B is



• Example 4:  We have 7 balls each of different colors 
(red, orange, yellow, green, blue, indigo, violet) and 3 
boxes each of different shapes (tetrahedron, cube, 
dodecahedron). How many ways are there to place these 
7 balls into the 3 boxes such that each box contains at 
least 1 ball?
Solution:
Let X be the total number of ways we can distribute the 
balls if there are no restrictions. Each ball can be placed 
into any one of the 3 boxes, so                  .
Let T be the set of ways such that the cube boof ways 
such that the tetrahedron box has no balls, C be the set 
of x has no balls and D be the set of ways such that the 
dodecahedron box has no balls. We would like to find   
|X|-|T C D|



• We have                                      , since the balls can be 
placed into one of the two other boxes, and

,
since all the balls must be placed in the remaining box,      
and                              .  



• Example 5 [derangements]: There are eight guests 
at a Secret Santa party. Each guest brings a gift and each 
receives another gift in return. No one is allowed to 
receive the gift they brought. How many ways are there 
to distribute the gifts?
Solution: 

• Let A denote the set of ways to distribute gifts such that 
everyone receives a gift, possibly their own. Let  denote 
the set of ways to distribute gifts such that person i
receives his or her own gift. Then we would like to find

• Since  is the set of ways for person i to receive his/her 
own gift, there are 7 choices of gifts for the next person, 6 
choices of gifts for the following person, and so on. By 
the rule of product,



• Since Ai ∩ Aj is the set of ways person i and person j both 
receive their own gifts, there are 6 choices of gifts for the 
next person, 5 choices of gifts for the following person, 
and so on. Again by the rule of product,

• By continuing this argument, if k people receive their 
own gifts, then there are (8 - k)! possible ways. Applying 
PIE. we obtain

• Note: A derangement of n objects is a permutation of 
the objects such that none of them stay in the same 
place. The number of ways this can be done is denoted 
Dn, and this calculation shows                        .



Euler’s function

• The function φ(m) equal to the number of positive 
integers not exceeding m and coprime with it, called the 
Euler’s function.

• If   

• then 

• Example



Newton’s binomial 
Permutations

• Take n different elements: a1, a2, a3, ..., an.
• We will rearrange them in all possible ways, keeping 

their quantity and changing the order of their 
arrangement.

• Each of the thus obtained combination is called 
permutation. The total number of permutations of n 
elements is denoted by Pn



Placement

• We will make groups of m distinct elements 
taken from a set of n elements by placing these 
m elements in a different order.

• The resulting combinations are called 
placements of n elements on k.



Combinations

• We will make groups of m distinct elements taken from a 
set of n elements without taking into account the order 
of these m elements.

• Then we get a combination of n elements on k.

,      0 ≤ k ≤ n   ,

,      0 < k ≤  n



Combinations with repetition

• The number of combinations with repetition of n
elements on k



Newton’s binomial

• It is a formula representing the expression (a + b ) n with 
a positive integer n as a polynomial.

• Note that the sum of the exponents of a and b is 
constant and equal to n.
Numbers are called binomial 
coefficients.

• The other way of writing this is 



The binomial theorem

Proof
, (n brackets).

• So the coefficient of in the expansion is the 
number of ways getting when the n brackets are 
multiplied out. 

• Each term in the expansion is the product of one term 
from each bracket; so is obtained as many times 
as we can choose y from r of the brackets (and x from the 
remaining n-r brackets).

• But this is just the number of ways of choosing r of the n 
brackets, which is .



Examples
• Example 1

• Example 2



Pascal’s triangle

1    1 
1 2 1 

1  3 3 1 
1 4       6   4   1 

1 5 10 10  5  1 
1  6 15 20 15     6 1 

1 7 21 35  35 21  7 1  
1  8  28 56 70  56 28 8 1 

…………………………………………………….
• In the top line two units are written.  All subsequent 

lines begin and end by one. Intermediate numbers in 
these lines are obtained by summing adjacent numbers 
in the previous line.

• The first row in the table contains the binomial
coefficients for n = 1; second for n = 2; third for n = 3,
etc.



• coefficients:
1

1    1
1    2    1

1    3    3    1
1   4    6    4   1 

Note the triangular array of coefficients, known as 
Pascal’s triangle. Each row consists of the choice 
numbers: e.g. the bottom row shown consists of: 



Properties of binomial coefficients

• The sum of the coefficients of the expansion of ( a + b ) n

is 2 n.

• Coefficients of terms equidistant from the ends of the 
expansion are equal.

• The sum of the coefficients of the even terms in the 
expansion equals to the sum of the coefficients of odd 
terms of the expansion; each of them is equal to 

• For all 


