
Asymptotic combinatorial identities
Estimates of n!

• This estimation is a component part in many 
combinatorial identities. 

• There are three bilateral inequalities for this function, 
wherein the accuracy of inequalities of every next pair is 
higher than accuracy of the previous inequalities. 
Theorem 1
If                , then 
Theorem 2
If                , then 



Lemma 1
If              ,  then

Theorem 3



Stirling's formula
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Theorem 4

Stirling’s formula
The ratio of upper and lower inequalities from theorem 4 
does not exceed          and if                 converges to 1. Thus 
from the theorem 4 Stirling’s formula follows



Binomial coefficients
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• Using Stirling’s formula we establish three 
asymptotically precise formulas for           .

• They are valid under constraints on k.



Entropy function
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The sum of the binomial coefficients
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Consequence
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