Asymptotic combinatorial identities

Estimates of n !

- This estimation is a component part in many combinatorial identities.
- There are three bilateral inequalities for this function, wherein the accuracy of inequalities of every next pair is higher than accuracy of the previous inequalities.
Theorem 1
If $n \geq 6$, then $\left(\frac{n}{3}\right)^{n}<n!<\left(\frac{n}{2}\right)^{n}$
Theorem 2
If $n \geq 1$, then $e \cdot\left(\frac{n}{e}\right)^{n} \leq n!\leq n e \cdot\left(\frac{n}{e}\right)^{n}$

Lemma 1

If $k \geq 2$, then
$\int_{k-1}^{k} \ln x d x+(\ln 2 k-\ln (2 k-1)) \leq \ln k \leq \int_{k-1}^{k} \ln x d x+\frac{1}{2}(\ln k-\ln (k-1))$

Theorem 3

$$
0.8 \cdot e \sqrt{n}\left(\frac{n}{e}\right)^{n} \leq n!\leq e \sqrt{n}\left(\frac{n}{e}\right)^{n}
$$

Stirling's formula

Lemma 2

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \sin ^{2 n} d x=\frac{(2 n-1)(2 n-3) \cdot \ldots \cdot 3 \cdot 1}{2 n(2 n-2 \ldots .4 \cdot 2} \cdot \frac{\pi}{2}=\frac{(2 n-1)!!}{2 n!!} \cdot \frac{\pi}{2} \\
& \int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} d x=\frac{2 n(2 n-2) \cdot \ldots 4 \cdot 2}{(2 n+1)(2 n-1) \cdot \ldots \cdot 3 \cdot 1}=\frac{2 n!!}{(2 n+1)!!}
\end{aligned}
$$

Lemma 3

$$
\frac{2^{2 n}}{\sqrt{\pi n}} e^{-\frac{1}{4 n}} \leq\binom{ 2 n}{n} \leq \frac{2^{2 n}}{\sqrt{\pi n}}
$$

Theorem 4

$\sqrt{2 \pi n} \cdot\binom{n}{e}^{n} e^{-1 / 4 n} \leq n!\leq \sqrt{2 \pi n} \cdot\binom{n}{e}^{n} e^{1 / 4 n}$

Stirling's formula

The ratio of upper and lower inequalities from theorem 4 does not exceed $e^{\frac{1}{2 n}}$ and if $n \rightarrow \infty$ converges to 1 . Thus from the theorem 4 Stirling's formula follows

$$
n!=\sqrt{2 \pi n} \cdot\binom{n}{e}^{n}(1+o(1))
$$

Binomial coefficients

$$
\text { If } k \geq 6,\left(\frac{2(n-k)}{k}\right)^{k} \leq\binom{ n}{k} \leq\binom{ 3 n}{k}^{k}
$$

- Using Stirling's formula we establish three asymptotically precise formulas for $\binom{n}{k}$.
- They are valid under constraints on k.

Entropy function

For each $0<x<1$

$$
\begin{aligned}
& H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x) \\
& H(0)=H(1)=0
\end{aligned}
$$

Theorem 5

If $\min (k, n-k) \rightarrow \infty$,

$$
\text { then }\binom{n}{k}=\frac{2^{n} H\left(\frac{k}{n}\right)}{\frac{\sqrt{2 \pi k(n-k)}}{n}}(1+o(1))
$$

Theorem 6
If $n \rightarrow \infty$ and $t=o\left(n^{\frac{2}{3}}\right)$,

$$
\text { then }\binom{n}{\frac{n}{2-t}}=\frac{2^{n} e^{-\frac{2 t^{2}}{n}}}{\sqrt{\frac{\pi n}{2}}}(1+o(1))
$$

Theorem /
If $n \rightarrow \infty$ and $k=o\left(n^{\frac{2}{3}}\right)$
then $\binom{n}{k}=\frac{n^{k} e^{-\frac{k^{2}}{2 n}}}{k!}(1+o(1))$

The sum of the binomial coefficients

Theorem 8
If $1 \leq \varphi(n) \leq \frac{\sqrt{n}}{2}$, then $\sum_{k=0} \quad\binom{n}{k} \leq \frac{2^{n-3}}{\varphi(n)}$
Theorem 9
If $1 \leq t \leq \frac{n}{2}$, then $\sum_{k=0}^{t}\binom{n}{k} \leq 2^{n H\left(\frac{t}{n}\right)}$
Consequence
If $0 \leq k \leq n$, then $\binom{n}{k} \leq 2^{n H\left(\frac{k}{n}\right)}$
Theorem 10
If $0 \leq t \leq \frac{n}{2}$, then

$$
\sum_{k=0}^{\frac{n}{2}-t}\binom{n}{k} \leq 2^{n} e^{-\frac{2 t^{2}}{n}}
$$

Literature

- А.B. Чашкин "Лекции по дискетной математике"
- A First Course in Discrete Mathematics 2nd edition
- Discrete Mathematics for Computing

