Linear recurrent sequences and generating functions of sets

Lections 5-6

Contents

- Linear recurrent sequences
- Theorem on solving linear recurrent relations with constant coefficients
- Homogeneous and inhomogeneous recurrence relation
- The example of solving the inhomogeneous recurrent correlation
- The number of irreducible polynomials
- Mobius function
- Generating functions of sets
- Weight function, generating functions of sets
- Theorem of the iterations generating function
- Examples
- Problem of the number of formulas
- Generating functions of several variables

Linear recurrent sequences

- Generating function of sequence $\{F\}_{n=0}^{\infty}, F_{n} \in \mathbb{R}$ is

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} x^{n} F_{n} \tag{1}
\end{equation*}
$$

Theorem on solving linear recurrence relations with constant coefficients

If sequence $F_{0}, F_{1}, F_{2}, \ldots, F_{n}, \ldots$ satisfy the linear recurrence relation $\quad F_{n}=a_{1} F_{n-1}+a_{2} F_{n-2}+\cdots+a_{k} F_{n-k}$ with constant coefficients $a_{i}, n \geq k$, then if $n \geq 0$

$$
\begin{equation*}
F_{n}=\sum_{i=1}^{m} \alpha_{i}^{n} P_{i}(n) \tag{3}
\end{equation*}
$$

- α_{i} - is a root of the polynomial
$f(x)=x^{k}-a_{1} x^{k-1}-a_{2} x^{k-2}-\cdots-a_{k}$ of multiplicity p_{i}
- P_{i} - is a polynomial of degree $p_{i}-1$,
whose coefficients are determined so that the equation (3) is valid for the first k members of the sequence.

Proof (1/8)

- Sequence $\left\{F_{n}\right\}$ we associate with generating function

$$
F(x)=\sum_{n=0}^{\infty} x^{n} F_{n}
$$

- The left and the right parts of recurrence relation (2) multiple by x^{n} and sum among all integers n from k to infinity.

$$
\begin{align*}
& \sum_{n=k}^{\infty} x^{n} F_{n}=\sum_{n=k}^{\infty} x^{n}\left(a_{1} F_{n-1}+a_{2} F_{n-2}+\cdots+a_{k} F_{n-k}\right) \\
& \sum_{n=k}^{\infty} x^{n} F_{n}=a_{1} x \sum_{n=k}^{\infty} x^{n-1} F_{n-1}+ \tag{4}\\
& +a_{2} x^{2} \sum_{n=k}^{\infty} x^{n-2} F_{n-2}+\cdots+a_{k} x^{k} \sum_{n=k}^{\infty} x^{n-k} F_{n-k}
\end{align*}
$$

Proof

(2/8)

- for the left part (4):

$$
\sum_{n=k}^{\infty} x^{n} F_{n}=F(x)-\left(F_{0}+x F_{1}+\cdots+x^{k-1} F_{k-1}\right)
$$

- for the i sum of the right part (4):

$$
\begin{aligned}
& a_{i} x^{i} \sum_{n=k}^{\infty} x^{n-i} F_{n-i}=a_{i} x^{i} \sum_{m=k-i}^{\infty} x^{m} F_{m}= \\
& \quad=a_{i} x^{i}\left(F(x)-\left(F_{0}+x F_{1}+\cdots+x^{k-i-1} F_{k-i-1}\right)\right)
\end{aligned}
$$

Proof (3/8)

- equation (4) can be written as

$$
\begin{aligned}
& \quad F(x)-\left(F_{0}+x F_{1}+\cdots+x^{k-1} F_{k-1}\right)= \\
& \quad=a_{1} x^{1}\left(F(x)-\left(F_{0}+x F_{1}+\cdots+x^{k-2} F_{k-2}\right)\right)+ \\
& +a_{2} x^{2}\left(F(x)-\left(F_{0}+x F_{1}+\cdots+x^{k-3} F_{k-3}\right)\right)+\cdots+a_{k} x^{k} F(x)
\end{aligned}
$$

- transfer all terms with $F(x)$ to the left side:

$$
\begin{aligned}
& \quad F(x)\left(1-a_{1} x-a_{2} x^{2}-\cdots-a_{k} x^{k}\right)= \\
& \quad=F_{0}\left(1-a_{1} x-a_{2} x^{2}-\cdots-a_{k-1} x^{k-1}\right)+ \\
& +F_{1}\left(1-a_{1} x-a_{2} x^{2}-\cdots-a_{k-2} x^{k-2}\right)+\cdots+x^{k-1} F_{k-1}
\end{aligned}
$$

- we denote the polynomial on the right side as $H_{k-1}(x)$

Proof (4/8)

$$
\begin{equation*}
F(x)=\frac{H_{k-1}(x)}{1-a_{1} x-a_{2} x^{2}-\cdots-a_{k} x^{k}} \tag{5}
\end{equation*}
$$

- Suppose that polynomial from the denominator of the
right part has m different roots $\frac{1}{\alpha_{1}}, \frac{1}{\alpha_{2}}, \ldots, \frac{1}{\alpha_{m}}$ Multiplicities are $p_{1}, p_{2}, \ldots, p_{m}$ respectively.
- Decompose denominator into multipliers:

$$
F(x)=\frac{H_{k-1}(x)}{\left(1-\alpha_{1} x\right)^{p_{1}}\left(1-\alpha_{2} x\right)^{p_{2}} \ldots\left(1-\alpha_{k} x\right)^{p_{m}}}, \begin{array}{r}
p_{1}+p_{2}+\cdots+p_{m}=k \tag{6}
\end{array}
$$

Proof (5/8)

- Represent the right side of equation as the sum of fractions

$$
\begin{aligned}
& F(x)=\frac{\beta_{p_{1}}^{1}}{\left(1-\alpha_{1} x\right)^{p_{1}}}+\cdots+\frac{\beta_{p_{1}-j}^{1}}{\left(1-\alpha_{1} x\right)^{p_{j}-1}}+\cdots+\frac{\beta_{1}^{1}}{\left(1-\alpha_{1} x\right)}+ \\
& +\frac{\beta_{p_{2}}^{2}}{\left(1-\alpha_{2} x\right)^{p_{2}}}+\cdots+\frac{\beta_{p_{2}-j}^{2}}{\left(1-\alpha_{2} x\right)^{p_{2}-j}}+\cdots+\frac{\beta_{1}^{2}}{\left(1-\alpha_{2} x\right)}+\cdots \\
& +\frac{\beta_{p_{m}}^{m}}{\left(1-\alpha_{m} x\right)^{p_{m}}}+\cdots+\frac{\beta_{p_{m}-j}^{m}}{\left(1-\alpha_{m} x\right)^{p_{m}-j}}+\cdots+\frac{\beta_{1}^{m}}{\left(1-\alpha_{m} x\right)}
\end{aligned}
$$

- $\beta_{i}^{j} \quad$ - constants (possible to be complex)

$$
\frac{1}{(1-\alpha x)^{k}}=\sum_{n=0}^{\infty}(\alpha x)^{n}\binom{n+k-1}{n}
$$

Proof (6/8)

- $\frac{\beta_{p}}{(1-\alpha x)^{p}}+\cdots+\frac{\beta_{p-j}}{(1-\alpha x)^{p-j}}+\cdots+\frac{\beta_{1}}{1-\alpha x}$
- The coefficient of x^{n} is $\alpha^{n} \sum_{j=0}^{p} \beta_{p-j}\binom{n+p-1-j}{n}$
- So, $F_{n}=\sum_{i=1}^{m} \alpha_{i}^{n} \sum_{j=0}^{p} \beta_{p_{i}-j}^{i}\binom{n+p_{i}-1-j}{n}$
- Note that for constants $\beta_{p-1}, \ldots, \beta_{0}$ there are constants $\gamma_{p-1}, \ldots, \gamma_{0}$ so that:

$$
\sum_{j=0}^{p} \beta_{p-j}\binom{n+p-1-j}{n}=\sum_{j=0}^{p} \gamma_{p-j} n^{n+p-1-j}
$$

Proof (7/8)

- (7) can be rewritten as

$$
\begin{equation*}
F_{n}=\sum_{i=1}^{m} \alpha_{i}^{n} \sum_{j=0}^{p} \gamma_{p_{i}-j}^{i} n^{n+p_{i}-1-j} \tag{8}
\end{equation*}
$$

constants ${ }_{j}{ }^{j}$ can be found by substitution n by $\mathrm{o}, 1, \ldots, \mathrm{k}-1$ in (8) and further solving system of linear equations.

- Recurrence equation (2) associates with its characteristic polynomial

$$
\begin{equation*}
f(x)=x^{k}-a_{1} x^{k-1}-a_{2} x^{k-2}-\cdots-a_{k} \tag{9}
\end{equation*}
$$

- Substitute x by $1 / y$ in this polynomial and then multiply it by $y^{k}: f^{*}(y)=1-a_{1} y-a_{2} y^{2}-\cdots-a_{k} y^{k}$ It is equal to the polynomial in the denominator of the right part of (5).

Proof (8/8)
 $$
f^{*}(y)=y^{k} f\left(\frac{1}{y}\right)
$$

- If α is the root of $f^{*}(y)=0$, then $\frac{1}{\alpha}$ is the root of $f(y)=0$
- Hence from (8) n term of the recurrence sequence (2) can be written as

$$
F_{n}=\sum_{i=1}^{m}\left(\alpha_{i}\right)^{n} P_{i}(n)
$$

- α_{i} is the root of the characteristic polynomial (9) of multiplicities p_{i}, P_{i} is a polynomial of degree $p_{i}-1$, whose coefficients are determined from k first terms of that sequence.

QED

Homogeneous and inhomogeneous recurrence relation

- In the recurrence relation (2) transfer all terms (which are not equal to zero) to the left.

$$
F_{n}-a_{1} F_{n-1}-a_{2} F_{n-2}-\cdots-a_{k} F_{n-k}=0
$$

Such relation is called homogeneous and is a special case of recurrence relation.
$F_{n}-a_{1} F_{n-1}-a_{2} F_{n-2}-\cdots-a_{k} F_{n-k}=f(n)$

- If $f(n) \neq 0$ then such relation is called inhomogeneous.
To solve inhomogeneous recurrent relation we can use the method of generating functions.

The example of solving the inhomogeneous recurrent relation

- Let in sequence $\left\{F_{n}\right\}_{0}^{\infty}$ first two terms are equal to 1 and other terms satisfy to inhomogeneous recurrent relation

$$
F_{n}=3 F_{n-1}-2 F_{n-2}+n
$$

Assume

$$
F(x)=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

then $\sum_{n=2}^{\infty} F_{n} x^{n}=3 \sum_{n=2}^{\infty} F_{n-1} x^{n}-2 \sum_{n=2}^{\infty} F_{n-2} x^{n}+\sum_{n=2}^{\infty} n \cdot x^{n}$
or $\quad F(x)-F_{0}-x F_{1}=3 x F(x)-3 x F_{0}-2 x^{2} F(x)+\frac{x}{(1-x)^{2}}$
Because $F_{0}=1$ and $F_{1}=1$, so we will get

The example of solving the inhomogeneous recurrent relation

- $F(x)=\frac{1-3 x}{1-3 x+2 x^{2}}+\frac{x}{(1-x)^{2}\left(1-3 x+2 x^{2}\right)}$

As $\quad 1-3 x+2 x^{2}=(1-x)(1-2 x)$, then

$$
F(x)=\frac{H_{3}(x)}{(1-x)^{3}(1-2 x)}
$$

$H_{3}(x)$ - polynomial of the third degree
Hence, $\quad F_{n}=a n^{2}+b n+c+d 2^{n}$
From (11) when $n=2$ and $n=3$ we can find $F_{2}=3, F_{3}=10$
Substitute in (12) instead of n numbers $O, 1,2$ and 3 , we will get a system of linear equations.

The example of solving the inhomogeneous recurrent relation

$$
\left\{\begin{aligned}
1 & =c+d \\
1 & =a+b+c+2 d \\
3 & =4 a+2 b+c+4 d \\
10 & =9 a+3 b+c+8 d
\end{aligned}\right.
$$

- From this system $a=-\frac{1}{2}, b=-\frac{5}{2}, c=-2, d=3$
- Hence,

$$
F_{n}=-\frac{1}{2} n^{2}-\frac{5}{2} n-2+3 \cdot 2^{n}
$$

- The possibility of solution (10) depends on the function $f(n)$.
- If $f(n)$ is quasi polynomial, i.e. $f(n)=\alpha^{n} P(n), \alpha$ - constant, $P(n)$ - polynomial, then (10) can be solved almost the same way as the inhomogeneous one.

