The number of irreducible polynomials, Lemma 1

- Apply method of generating functions to find numbers of irreducible polynomials over the field \mathbb{Z}_{p}.
- The number of irreducible polynomials of degree n with coefficient of the highest degree equal to one denoted as $P(n)$.
- Lemma 1

For sequence $P(n)$ the following recurrent equation exists

$$
\begin{equation*}
p^{n}=\sum_{m \mid n} m P(m) \tag{13}
\end{equation*}
$$

Proof of Lemma 1
 (1/3)

- Assume $p_{1 m}, p_{2 m}, \ldots, p_{P(m) m}$ all of the irreducible polynomials with degree equal to m.
- Opening brackets in the product
$\prod_{m=1}^{\infty} \prod_{k=1}^{P(m)}\left(1+p_{k m}+\left(p_{k m}\right)^{2}+\cdots+\left(p_{k m}\right)^{l}+\cdots\right)$
we get the sum of all possible products of the irreducible polynomials. Each of the products will be in this sum only once.
- As each polynomial uniquely decomposed into product of the irreducible polynomials, the sum will contain p^{n} products of degree n.

Proof of Lemma 1

(2/3)

- Each irreducible polynomial of degree m is associated with x^{m} and product (14) is associated with

$$
\prod_{m=1}^{\infty} \prod_{k=1}^{P(m)}\left(1+x^{m}+\left(x^{m}\right)^{2}+\cdots+\left(x^{m}\right)^{l}+\cdots\right)=\prod_{m=1}^{\infty}\left(\frac{1}{1-x^{m}}\right)^{P(m)}
$$

- As there are p^{n} polynomials of degree n in which coefficient of x^{n} is equal to 1 , it can be seen that after disclosure of x^{n} brackets in (15) coefficient of x^{n} will be equal to p^{n}.
- Hence $\frac{1}{1-p x}=\prod_{m=1}^{\infty}\left(\frac{1}{1-x^{m}}\right)^{P(m)}$
- Logarithm the left and the right side of (16)

Proof of Lemma 1 (3/3)

$$
\ln \frac{1}{1-p x}=\sum_{m=1}^{\infty} P(m) \ln \frac{1}{1-x^{m}}
$$

- Apply the formula $\ln \frac{1}{1-x}=\sum_{n=1}^{\infty} \frac{1}{n} x^{n}$ and decompose the right and the left parts of the last equation

$$
\sum_{n=1}^{\infty} \frac{1}{n} p^{n} x^{n}=\sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{k} P(m) x^{k m}=\sum_{n=1}^{\infty}\left(\sum_{k m=n} \frac{1}{k} P(m)\right) x^{n}
$$

- Equate the coefficients of x^{n}

QED

$$
\frac{1}{n} p^{n}=\sum_{k m=n} \frac{1}{k} P(m)=\sum_{m \mid n} \frac{m}{n} P(m)
$$

Mobius function, Lemma 2

- Mobius function is

$$
\mu(n)=\left\{\begin{array}{l}
1, \text { if } n=1 ; \\
(-1)^{k}, \text { if } n-m u l t i p l i c a t i o n ~ o f ~ \\
k \text { prime numbers } \\
0, \text { if } n \text { divides by the square of a prime number. }
\end{array}\right.
$$

- Lemma 2

$$
\sum_{m \mid n} \mu(m)= \begin{cases}1, & \text { if } n=0 \tag{17}\\ 0, & \text { if } n>0\end{cases}
$$

Proof of Lemma 2

- If $n=1$ then 1 is the only divider and hence $\mu(1)=1$.
- If $n>1$ then $n=p_{1}^{q_{1}} \ldots p_{r}^{q_{r}}$.
- It can be seen that in sum (17) only divisors without multiple multipliers should be considered.
- Hence

$$
\sum_{m \mid n} \mu(m)=\sum_{k=0}^{r} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq r} \mu\left(p_{i_{1}} \ldots p_{i_{k}}\right)=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k}=0
$$

QED

Lemma 3

- Lemma 3

Functions $f(n)$ and $h(n)$ defined on the set of positive integers satisfy

$$
f(n)=\sum_{m \mid n} h(m), n \in \mathbb{N}
$$

if and only if

$$
h(n)=\sum_{m \mid n} \mu\left(\frac{m}{n}\right) f(m), \quad n \in \mathbb{N}
$$

Proof of Lemma 3

- We will show that from (18) follows (19).
- Note that $\quad \sum_{m \mid n} \mu\left(\frac{n}{m}\right)=\sum_{m \mid n} \mu(m) f\left(\frac{n}{m}\right)$,
as sums from the both parts of the equation only differ by the order of the terms.
- Instead of $f(m)$ substitute the right part of equation (18) into the right part of the last equation.
- Changing the order of summation and using lemma 2 we will get

Proof of Lemma 3

(2/2)

$$
\begin{aligned}
& \sum_{m \mid n} \mu(m) f\left(\frac{n}{m}\right)=\sum_{m \mid n} \mu(m) \sum_{k \left\lvert\, \frac{n}{m}\right.} h(k)= \\
& =\sum_{m \mid n} \sum_{k \left\lvert\, \frac{n}{m}\right.} \mu(m) h(k)=\sum_{k m \mid n} \mu(m) h(k)= \\
& =\sum_{k \mid n} \sum_{m \left\lvert\, \frac{n}{k}\right.} \mu(m) h(k)=\sum_{k \mid n} h(k) \sum_{m \left\lvert\, \frac{n}{k}\right.} \mu(m)=h(n)
\end{aligned}
$$

- The converse assertion proved similarly.

QED

Theorem 2

Theorem 2

- $P(n)$ - number of irreducible polynomial of degree n

Proof

$$
P(n)=\frac{1}{n} \sum_{m \mid n} \mu\left(\frac{n}{m}\right) p^{m}
$$

- From lemma 1 follows that equation (18) from lemma 3 exists if $f(n)=p^{n}$ and $h(n)=n P(n)$ for all natural n.
- Hence assertion of the theorem follows from lemma 3.

QED

