## Generating functions of sets

- Consider set $A$ and function $w: A \rightarrow\{0,1, \ldots\}$, which is positive on this set of elements.
- Function $w$ is a weight function on the set $A$.
- Generating function of the set $A$ by weight function $w$ is

$$
F_{A}^{w}(x)=\sum_{\alpha \in A} x^{w(\alpha)}
$$

- Assume, for example, that set $A$ consists of all binary sequences of finite length and value $w(\alpha)$ of weight function on sequence $\alpha$ is equal to the length of this sequence. Then

$$
F_{A}^{w}(x)=\sum_{n=1}^{\infty} 2^{n} x^{n}=\frac{2 x}{1-2 x}
$$

## Theorem 3

- If $w$ - weight function on the set $N, A$ and $B$ - disjoint subsets of set $N$, then

$$
F_{A \cup B}^{w}(x)=F_{A}^{w}(x)+F_{B}^{w}(x)
$$

- Proof

Next equation follows from the definition of generating functions of sets

$$
\begin{gathered}
F_{A \cup B}^{w}(x)=\sum_{\sigma \epsilon A \cup B} x^{w(\sigma)}=\sum_{\sigma \in A} x^{w(\sigma)}+\sum_{\sigma \in B} x^{w(\sigma)}= \\
=F_{A}^{w}(x)+F_{B}^{w}(x)
\end{gathered}
$$

## QED

## Theorem 4

- If $w_{a}, w_{b}, w$ - weight functions on sets $A$ and $B$ and in direct product $A \times B$. If for all $(\alpha, \beta)$ from $A \times B$ and

$$
w((\alpha, \beta))=w_{a}(\alpha)+w_{b}(\beta)
$$

then

$$
F_{A \times B}^{w}(x)=F_{A}^{w}(x) \cdot F_{B}^{w}(x)
$$

- Proof

Next equation follows from the definition of generating functions of sets

$$
\begin{gathered}
F_{A \times B}^{w}(x)=\sum_{(\alpha, \beta) \in A \times B} x^{w((\alpha, \beta))}=\sum_{\alpha \in A} x^{w_{a}(\alpha)} \cdot \sum_{\beta \in B} x^{w_{b}(\beta)}= \\
=F_{A}^{w}(x) \cdot F_{B}^{w}(x)
\end{gathered}
$$

## QED

## Note

- Further we will omit the sign of the direct product.
- Iteration of the set $A$ is a set $A^{*}=\bigcup_{n=0}^{\infty} A^{n}$ where $A^{0}$ is an
empty set.
- Later we will denote empty set as $\lambda$ and assume its weight equals to zero.


## Theorem of the iterations generating function

## - Theorem 5

If $w$ - weight function on the set $A$, then

$$
F_{A^{*}}^{w}(x)=\frac{1}{1-F_{A}^{w}(x)}
$$

if function $\frac{1}{1-F_{A}^{w}(x)}$ decomposes into expansion in
zero.

- Proof As $A^{*}=\bigcup_{n=0} A^{n} \quad$ then from two previous theorems
follows

$$
F_{A^{*}}^{w}(x)=\sum_{n=0}^{\infty} F_{A^{n}}^{w}(x)=\sum_{n=0}^{\infty}\left(F_{A}^{w}(x)\right)^{n}=\frac{1}{1-F_{A}^{w}(x)}
$$

- QED


## Operation of sets subtraction

- If on sets $A$ and $B$ the same weight function $w$ is defined and $A \subseteq B$, then $\quad F_{B \backslash A}^{w}(x)=F_{B}^{w}(x)-F_{A}^{w}(x)$.


## Examples of the theorems usage

## - Example 1

Find generating functions for set

$$
A=\bigcup_{n=1}^{\infty}\{0,1\}^{n}
$$

of all sequences $(0,1)$ of finite length with weight function equal to the length of sequence.

- Set $A$ can be $A=(0 \cup 1)^{*}-\lambda$ or $A=(0 \cup 1)^{*}(0 \cup 1)$.

$$
\begin{aligned}
& F_{(0 \cup 1)^{*}-\lambda}^{w}(x)=\frac{1}{1-2 x}-1=\frac{2 x}{1-2 x} \\
& F_{(0 \cup 1)^{*}(0 \cup 1)}^{w}(x)=\frac{1}{1-2 x} \cdot 2 x=\frac{2 x}{1-2 x}
\end{aligned}
$$

- different formulas, which define the same set, leads to the same generating function.


## Example 2 (1/3)

## - Example 2

Find generating function for the set $C$ which consists of all $(0,1)$ sequences of finite length without two adjacent zeros with weight function of sequence equal to its length.

- Every sequence in $C$ is divided into three parts.
- The first part consists only of ones and if sequence begins with zero assume that the length of first part equals to zero.
- The third part consists of zero if sequence ends with zero and if sequence ends with one assume that the length of third part equals to zero.
- The second part can be divided into blocks each of which begins with zero and after there is a nonzero number of ones.


## Example $2 \quad(2 / 3)$

- For example, in sequence 1110110101 the first part is 111, the second part is 0110101 and the length of the third part is zero.
- Sequence 10 consists only of two parts - first part 1 and third part 0 , the length of the second part is zero.
- Set $C$ can be represented by formula as $1^{*}\left(011^{*}\right)^{*}(0 \cup \lambda)$. Each element of this set is generated by this formula uniquely.

$$
\begin{gathered}
F_{C}^{w}(x)=F_{1^{*}}^{w}(x) F_{\left(011^{*}\right)^{*}}^{w}(x) F_{0 \cup \lambda}^{w}(x)= \\
= \\
\frac{1}{1-x}\left(1-\frac{x^{2}}{1-x}\right)^{-1}(1+x)=\frac{1+x}{1-x-x^{2}}
\end{gathered}
$$

## Example 2 (3/3)

- Now obtain an explicit formula for the number of sequences from $C$ with the length $n$.
- This can be done by expanding the function in the series as this was done in the proof of Theorem 1.


## Composition of sets, s-fragments

- Let B is a set. Assume that each element of this set can be divided into fragments.
Among fragments select a subset. Elements of that subset we will call s-fragments.
- For example, if B consists of all ( 0,1 ) sequences of finite length, then as fragments can be considered zeros and ones and as s-fragments - zeros.


## Composition of sets

- Consider three sets $A, B, C$.

The set $C$ is a composition of sets $A$ and $B(C=B \circ A)$ if such set of s-fragments of elements from $B$ exists that each element of set $C$ can be uniquely derived from some element of the set $B$ by substitution in this element all of its s-fragments by elements of the set $A$.

- For example, let $A=0\left(0^{*}\right), B$ consists of $(0,1)$ sequences of finite length, which doesn't have two adjacent zeros, the set of s-fragments elements from $B$ consists of unique fragment "o".
- As any $(0,1)$ sequence can be uniquely derived from appropriate sequence of the set $B$, in which each zero is substituted by some sequence of zeros then set $C$ of all finite sequences of $(0,1)$ is a composition of sets $A$ and $B$

$$
C=B \circ A
$$

## Weight function

- Consider $C=B \circ A$
- $w_{s}$ is a weight function on the set B , that for element $\beta$ from $\mathrm{B}, w_{S}(\beta)$ is equal to the number of s-fragments in element $\beta$.
- For the previous example $w_{s}(\beta)$ is equal to the number of zeros in the set $\beta$.


## Theorem 6

## - Theorem 6

Assume $w$ and $w^{\prime}$ - weight functions on the sets A and $B \circ A$. If for each element $\sigma \in B \circ A$ derived from element $\beta \in B$ with weight $w_{s}(\beta)=m$ and elements $\alpha_{1}, \ldots, \alpha_{m} \in A$ equation exists

$$
\begin{gathered}
w^{\prime}(\sigma)=w\left(\alpha_{1}\right)+\cdots+w\left(\alpha_{m}\right), \text { then } \\
F_{B \circ A}^{w^{\prime}}(x)=F_{B}^{w_{\beta}}\left(F_{A}^{w}(x)\right),
\end{gathered}
$$

if the given substitution is acceptable.

## Proof (1/2)

- Assume $\sigma \in B \circ A, \alpha^{m}=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in A^{m}$ and $\beta \in B, w_{s}(\beta)=m$

We use equation $\sigma=\left(\beta, \alpha^{m}\right)$ to show that element $\sigma$ is derived by substitution of elements
$\alpha_{1}, \ldots, \alpha_{m}$ into element $\beta$. Then

## Proof

## (2/2)

$$
\begin{aligned}
& F_{B \circ A}^{w^{\prime}}(x)=\sum_{\sigma \in B \circ A} x^{w^{\prime}(\sigma)}=\sum_{m \geq 0} \sum_{\sigma=\left(\beta, \alpha^{m}\right)} x^{w^{\prime}(\sigma)}= \\
& w_{S}(\beta)=m \\
& =\sum_{m \geq 0} \sum_{\sigma=\left(\beta, \alpha^{m}\right)} x^{w\left(\alpha_{1}\right)+\cdots+w\left(\alpha_{m}\right)}=\sum_{m \geq 0} \sum_{w_{s}(\beta)=m}^{w_{s}(\beta)=m}\left(\sum_{\alpha \in A} x^{w(\alpha)}\right)^{m}= \\
& =\sum_{m \geq 0} \sum_{w_{s}(\beta)=m}\left(\sum_{\alpha \in A} x^{w(\alpha)}\right)^{w_{s}(\beta)}=\sum_{\beta \in B}\left(\sum_{\alpha \in A} x^{w(\alpha)}\right)^{w_{s}(\beta)}= \\
& =F_{B}^{w_{s}}\left(F_{A}^{w}(x)\right)
\end{aligned}
$$

## QED

## Problem of the number of formulas

- The sequence of left and right brackets is called formula only if it satisfies

1. Sequence () is a formula
2. If $\boldsymbol{f}$ is a formula then $(\boldsymbol{f})$ is a formula
3. If $\boldsymbol{f}_{\boldsymbol{1}}$ and $\boldsymbol{f}_{\mathbf{2}}$ are formulas then $\boldsymbol{f}_{\mathbf{1}} \boldsymbol{f}_{\mathbf{2}}$ is a formula

- Each formula contains the same number of left and right brackets.
- The number of left (or right) brackets in this formula is called the length of formula.
- Find the number of formulas with the length $k \geq 1$.


## Problem of the number of formulas

- On the set $A$, which consists of all formulas including empty formula which doesn't contain any bracket, consider weight function $w$ equal to the length of the formula.
- Let, $F_{A}^{w}(x)$ - generating function of the set $A$.
- Consider set $B$ which consists of all formulas, each of which can be represented as ( $f$ ), where $f$ - formula.
- For example, formula (() ()) belongs to $B$ and formula () (() )) doesn't belongs to $B$.
- Function $x F_{A}^{w}(x)$ is a generating function of the set $B$.


## Problem of the number of formulas

- Consider the set $C$, which consists of empty formula and all of the formulas ()...() in which after each left bracket there is a right bracket.
- $C$ is an iteration of the formula (), so $F_{C}^{w}(x)=\frac{1}{1-x}$
- Note that each formula from $A$ can be uniquely derived from a formula of the set $C$, if each pair of brackets in this formula is substituted by appropriate formula from $B$.
- For example, formula ()$(()()) \in A$ is derived from formula ()()$\in C$, if in this formula first pair of brackets is substituted by formula ()$\in B$ and the second pair by $(()()) \in B$.


## Problem of the number of formulas

- Hence $A=C \circ B$, where in formulas from $C$ s-fragments are the pair of brackets ().
- In this case, generating functions $F_{C}^{w}(x), F_{C}^{w_{s}}(x)$ are equal.
Equation $\quad w(f)=w\left(f_{1}\right)+\cdots+w\left(f_{m}\right)$ exists for every formula $f \in A$, which is derived from some formula of the set $C$ by substitution in this formula the pair of brackets ( ) to formulas $f_{1}, \ldots, f_{m} \in B$.
- With the use of Theorem 6

$$
F_{A}^{w}(x)=F_{C}^{w_{s}}\left(F_{B}^{w}(x)\right)=\frac{1}{1-x F_{A}^{w}(x)}
$$

## Problem of the number of formulas

$$
x\left(F_{A}^{w}(x)\right)^{2}-F_{A}^{w}(x)+1=0
$$

Function $F_{A}^{w}(x)$ is expansible into a series in the neighborhood of zero, so we take only one root of the equation, then

$$
\begin{equation*}
F_{A}^{w}(x)=\frac{1-\sqrt{1-4 x}}{2 x} \tag{20}
\end{equation*}
$$

With the use of binomial formula we obtain

## Problem of the number of formulas

$$
\begin{aligned}
& \sqrt{1-4 x}=1+\sum_{k=1}^{\infty} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \ldots\left(\frac{1}{2}-k+1\right)}{k!}(-4)^{k} x^{k}= \\
& =1+\sum_{k=1}^{\infty} \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \ldots\left(-\frac{2 k-3}{2}\right)}{k!}(-4)^{k} x^{k}= \\
& =1-\sum_{k=1}^{\infty} \frac{2^{k}(2 k-3)!!}{k!} x^{k}=1-\sum_{k=1}^{\infty} \frac{2^{k}(2 k-3)!!(k-1)!}{k!(k-1)!} x^{k}= \\
& =1-\sum_{k=1}^{\infty} \frac{2(2 k-3)!!(2 k-2)!!}{k!(k-1)!} x^{k}=1-\sum_{k=1}^{\infty} \frac{2(2 k-2)!}{k(k-1)!(k-1)!} x^{k}= \\
& =1-\sum_{k=1}^{\infty} \frac{2}{k}\binom{2 k-2}{k-1} x^{k}
\end{aligned}
$$

## Problem of the number of formulas

- Substituting it into formula (20) we obtain

$$
F_{A}^{w}(x)=\sum_{k=0}^{\infty} \frac{1}{k+1}\binom{2 k}{k} x^{k}
$$

- Thus, there are $\frac{1}{k+1}\binom{2 k}{k}$ formulas with the length $k$.


## Generating functions of several variables

- Theorems 3-6 are also correct for generating functions with larger number of variables if its conditions are satisfied with respect to some of the variables.
- As example of generating functions of several variables consider new solution of the task about the number of ( 0,1 )-sequences, in which there are no two adjacent zeros.
- Assume $A=1\left(1^{*}\right), \boldsymbol{B}$ is the set of $(0,1)$-sequences, in which there is no two adjacent identical symbols
- $\boldsymbol{C}$ is the set of $(0,1)$-sequences in which there are no two adjacent zeros.
- Assume the set of s-fragments of $B$ contain the only fragment " 1 ". So, $C=B \circ A$


## Generating functions of several variables

- On the set $A$ weight function $w_{a}$ is the length of sequence.
- On sets $B$ and $C$ weight function $w$ such that $w(\beta)=(i, j)$, where $i$ equals to the number of zeros and $j$ - to the number of ones in $\beta$.
- Functions $w$ and $w_{a}$ such as the second component $w_{2}$ of function $w$ and function $w_{a}$ satisfied Theorem 6,
- for any $\sigma$ derived by substitution of s-fragments in sequence from $B$ on sequences $\alpha_{1}, \ldots, \alpha_{m}$ from $A$, equation exists

$$
w_{2}(\sigma)=w_{a\left(\alpha_{1}\right)}+\cdots+w_{-} a\left(\alpha_{m}\right)
$$

## Generating functions of several variables

$$
F_{B \circ A}^{w}(x, y)=F_{B}^{w}\left(x, F_{A}^{w_{a}}(y)\right)
$$

- As

$$
B=(\lambda \cup 1)(01)^{*}(\lambda \cup 0)
$$

- Then

$$
F_{B}^{w}(x, y)=\frac{(1+x)(1+y)}{1-x y}
$$

- Substituting $y$ in this formula by generating function of the set A , we find generating function of the set $B \circ A$

$$
F_{B \circ A}^{w}(x, y)=\frac{(1+x)\left(1+\frac{y}{1-y}\right)}{1-\frac{x y}{1-y}}=\frac{1+x}{1-y-x y}
$$

## Generating functions of several variables

- As we are interested only in the number of sequences of certain length (the number of ones and zeros in this sequence isn't important), so to derive generating function of the set $C$ we identify variables in formula (21). We obtain

$$
F_{C}^{w}(x, x)=\frac{1+x}{1-x-x^{2}}
$$

which is equal to the one we got using another method.

