
Functions and their equivalence classes

§Assume D and R finite sets, K commutative ring, -
weight function on the set R. For each function f from the set 

let’s define its weight , assuming  

 ∈ 
§Functions and are equivalent if there is such element g

of the group G that  for each   . 
§The set decomposes into equivalence classes and 

as the weights of the equivalent functions from one class are 
the same we can talk about the weight of an equivalence class 
of functions from  (denote it as W(F)).



Functions and their equivalence classes,
example

§Coloring faces of the cube
§The faces will be colored in black and white. In this case the 

set D consists of 6 cube faces and the set R consists of black 
and white colors.
§Cube which faces are colored in black and white we will 

consider as function from D to R which associates each face 
to each color. 
§Group G which acts on the set D will be considered before 

group of cube rotations and two functions will be equivalent 
if corresponding to them colored cubes can be transformed 
into each other with the help of rotations of the group G. 



Functions and their equivalence classes,
example

§For example, all the cubes with one black and five white 
faces are equivalent to each other. 
§As a ring K is considered to be the ring of polynomials of 

variables and with integer coefficients. 
§White color will have the weight , black color – . 
§Thus the weight of colored cube and the weight of 

corresponding function will be polynomial of  6th degree of 
variables and . 
§ If we are interested in a number of different cubes with 

three black and three white faces we need to find the 
number of  equivalence classes which weight is .
§ It can be done with the Polya theorem.



Fundamental theorem, Polya theorem

Assume that on the set D group G acts, on the set R weight 
function with values in commutative ring K is defined. 

q Polya theorem 
Then weight sum of equivalence classes of F functions
from D to R is

is a cycle index of the group.



Polya theorem, proof

q Proof
§Consider element g from group G under the action of which 

the set D is decomposed into  cycles of the length one,  
cycles of the length two and etc.

§ Assume that cycles with the length one are formed by first  
elements of the set D, cycles with the length two are 

formed by the next elements that each cycle has the 
form  .
§The last elements of the set D form cycles of the form  

.



Polya theorem, proof

§ The vector of values of any function , which is defined 
on the set D, takes values in R and which under the action of 
element g transforms into itself looks in a certain way. 
§On the first places are randomly arranged any elements of 

the set R. 
§The next places are filled with pairs of the same 

elements from R.
§ It is necessary and sufficient for the equality 

,    . 
§The next places are filled with triples of the same 

elements from R and etc. 
§The last discharges of the vector  is the sequence 

which consists of  blocks of length s, each of which consists 
of the same elements. 



Polya theorem, proof
§All such vectors can be obtained by opening brackets in 

multiplication assuming that multiplication is noncommutative. 

   
Thus                                                                                                         (2)   

(3)
§For example, if  , then

(4)



Polya theorem, proof
§Calculate the weight sum of all functions which under the action of 

element g transform into itself. 
§ In (3) let’s substitute each element r with its weight .

   ( )  ∈ 
    ∈ 

    ∈ 
  

(5)
§Assume that the weight of functions left by element g in place 

have values  .
§Then the weight sum can be represented as     

(6)
is the number of functions with the weight .



Polya theorem, proof

§Assume  and calculate the sum of all 
function weights which vectors of values are listed on the 
right side of (4). It can be seen that 

• where the coefficient of the monomial is equal to the 
number of functions which weight is .



Polya theorem, proof

§ In equality (5) note that multiplication in its right part is the 
index of the element g, where variables  are substituted with

§Hence the sum of weights of all functions which under the 
action of element g transform into itself is equal to 

(7)



Polya theorem, proof

§Calculating the sum (7) by all of the elements of group G and 
dividing the result by the order of the group G with the use of (6) 

  



Polya theorem, proof

§From the Burnside lemma follows that with fixed value of 
the weight the sum 

equals to the number of equivalence classes which arose on 
the set of functions with weight as a result of the action of 
the group G on the set D.
§Hence the left part of the last equality equals to the sum of 

weights of all the equivalence classes.

QED



Polya theorem, example

§With the use of the theorem above find the number of 
different bicolor cubes with three black and three white faces.              
§ Into found before (1) cycle index of the rotation group of three-

dimensional substitute    with   .
(8)

Now find coefficient that will stand beside the monomial 
after disclosure of brackets and reduction of similar terms. 



Polya theorem, example

§ Into first summand  monomial included with 
coefficient 20, 
§ in the second and fourth summands there are no such 

monomial as they contain only even variables and ,
§ into the third summand monomial  included with the 

coefficient 12, 
§ into fifth with coefficient 16. 
§Hence coefficient of  in (8) is

§Thus, the faces of three-dimensional cube can be colored in 
two different ways under condition that three faces will be 
colored in white and the other three in black. 



Consequence, example

§Consequence
The number of equivalence classes is     ,  – is a cycle index of the group.

§Example
Find the number of different ways to color faces of the cube in 
three colors.

Into cycle index of the rotation group each variable 
substitute with number 3.


