Functions and their equivalence classes

BAssume \mathbf{D} and R finite sets, K commutative ring, $\boldsymbol{w}: \boldsymbol{R} \rightarrow \boldsymbol{K}$ weight function on the set R. For each function f from the set $\mathcal{F}=\{\boldsymbol{f}: \boldsymbol{D} \rightarrow \boldsymbol{R}\}$ let's define its weight \boldsymbol{w}, assuming

$$
w(f)=\prod_{d \in D} w(f(d))
$$

BFunctions f_{1} and f_{2} are equivalent if there is such element g of the group G that $f_{1}(\boldsymbol{d})=f_{\mathbf{2}}(\boldsymbol{g d})$ for each $d \in D$.
BThe set \mathcal{F} decomposes into equivalence classes $\boldsymbol{F}_{\mathbf{1}}, \ldots, \boldsymbol{F}_{\boldsymbol{k}}$ and as the weights of the equivalent functions from one class are the same we can talk about the weight of an equivalence class of functions from \mathcal{F} (denote it as $\mathbf{W}(F)$).

Functions and their equivalence classes, example

ßColoring faces of the cube
BThe faces will be colored in black and white. In this case the set \mathbf{D} consists of 6 cube faces and the set \mathbf{R} consists of black and white colors.
ßCube which faces are colored in black and white we will consider as function from \mathbf{D} to \mathbf{R} which associates each face to each color.
ßGroup G which acts on the set D will be considered before group of cube rotations and two functions will be equivalent if corresponding to them colored cubes can be transformed into each other with the help of rotations of the group \mathbf{G}.

Functions and their equivalence classes, example

BFor example, all the cubes with one black and five white faces are equivalent to each other.
BAs a ring K is considered to be the ring of polynomials of variables x and y with integer coefficients.
BWhite color will have the weight x, black color - y.
BThus the weight of colored cube and the weight of corresponding function will be polynomial of 6th degree of variables x and y.
ßlf we are interested in a number of different cubes with three black and three white faces we need to find the number of equivalence classes which weight is $x^{3} y^{3}$.
Blt can be done with the Polya theorem.

Fundamental theorem, Polya theorem

Assume that on the set \mathbf{D} group \mathbf{G} acts, on the set \mathbf{R} weight function w with values in commutative ring K is defined.

q Polya theorem

Then weight sum of equivalence classes of F functions from D to R is

$$
\sum_{F} W(F)=P_{G}\left(\sum_{r \in R} w(r), \sum_{r \in R}(w(r))^{2}, \ldots, \sum_{r \in R}(w(r))^{k}, \ldots\right)
$$

\boldsymbol{P}_{G} is a cycle index of the group.

Polya theorem, proof

q Proof

ßConsider element \mathbf{g} from group \mathbf{G} under the action of which the set \mathbf{D} is decomposed into $\boldsymbol{k}_{\mathbf{1}}$ cycles of the length one, $\boldsymbol{k}_{\mathbf{2}}$ cycles of the length two and etc.
$ß$ Assume that cycles with the length one are formed by first $\boldsymbol{k}_{\mathbf{1}}$ elements of the set \mathbf{D}, cycles with the length two are formed by the next $\mathbf{2} \boldsymbol{k}_{2}$ elements that each cycle has the form $\left(d_{i} \boldsymbol{d}_{\boldsymbol{i}+1}\right)$.
ßThe last $\boldsymbol{s} \boldsymbol{k}_{\boldsymbol{s}}$ elements of the set \mathbf{D} form $\boldsymbol{k}_{\boldsymbol{s}}$ cycles of the form

$$
\left(d_{j} d_{j+1} \ldots d_{j+s-1}\right)
$$

Polya theorem, proof

B The vector of values $v(f)$ of any function f, which is defined on the set \mathbf{D}, takes values in \mathbf{R} and which under the action of element g transforms into itself looks in a certain way.
ßOn the first $\boldsymbol{k}_{\mathbf{1}}$ places are randomly arranged any elements of the set \mathbf{R}.
BThe next $2 \boldsymbol{k}_{2}$ places are filled with \boldsymbol{k}_{2} pairs of the same elements from R.
ßIt is necessary and sufficient for the equality

$$
f(d)=f(g(d)), d \in\left\{d_{k_{1}+1}, \ldots, d_{k_{1}+2 k_{2}}\right\}
$$

BThe next $3 \boldsymbol{k}_{3}$ places are filled with \boldsymbol{k}_{3} triples of the same elements from \mathbf{R} and etc.
BThe last $\boldsymbol{s} \boldsymbol{k}_{s}$ discharges of the vector $v(f)$ is the sequence which consists of \boldsymbol{k}_{s} blocks of length s , each of which consists of the same elements.

Polya theorem, proof

ßAll such vectors can be obtained by opening brackets in multiplication assuming that multiplication is noncommutative.

$$
\left(\sum_{r \in R} r\right)^{k_{1}}\left(\sum_{r \in R} r r\right)^{k_{2}} \cdots\left(\sum_{r \in R} r \cdots r\right)^{k_{s}}
$$

Thus

$$
\begin{equation*}
\sum_{f=g(f)} v(f)=\left(\sum_{r \in R} r\right)^{k_{1}}\left(\sum_{r \in R} r r\right)^{k_{2}} \cdots\left(\sum_{r \in R} r \cdots r\right)^{k_{s}} \tag{2}
\end{equation*}
$$

BFor example, if $\boldsymbol{s}=\mathbf{2}, \boldsymbol{k}_{\mathbf{1}}=\mathbf{1}, \boldsymbol{k}_{\mathbf{2}}=\mathbf{2}, \boldsymbol{R}=\{\boldsymbol{x}, \boldsymbol{y}\}$, then

$$
\begin{align*}
& (x+y)(x x+y y)(x x+y y)=x x x x x+x x x y y+x y y x x+ \\
& +x y y y y+y x x x x+y x x y y+y y y x x+y y y y y \tag{4}
\end{align*}
$$

Polya theorem, proof

BCalculate the weight sum of all functions which under the action of element g transform into itself.
ßln (3) let's substitute each element r with its weight $w(r)$.

$$
\begin{equation*}
\sum_{f=g(f)} w(v(f))=\left(\sum_{r \in R} w(r)\right)^{k_{1}}\left(\sum_{r \in R}(w(r))^{2}\right)^{k_{2}} \cdots\left(\sum_{r \in R}(w(r))^{s}\right)^{k_{s}} \tag{5}
\end{equation*}
$$

ßAssume that the weight of functions left by element g in place have values $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}$.
BThen the weight sum can be represented as

$$
\begin{equation*}
\sum_{w_{i}} w_{i} \psi_{i}(g) \tag{6}
\end{equation*}
$$

$\psi_{i}(g)$ is the number of functions with the weight \boldsymbol{w}_{i}.

Polya theorem, proof

BAssume $\boldsymbol{w}(\boldsymbol{x})=\boldsymbol{t}, \boldsymbol{w}(\boldsymbol{y})=\boldsymbol{s}$ and calculate the sum of all function weights which vectors of values are listed on the right side of (4). It can be seen that

$$
\begin{aligned}
(w(x) & +w(y))(w(x x)+w(y y))(w(x x)+w(y y))= \\
& =(t+s)\left(t^{2}+s^{2}\right)\left(t^{2}+s^{2}\right)= \\
& =t^{5}+t^{4} s+2 t^{3} s^{2}+2 t^{2} s^{3}+t s^{4}+s^{5}
\end{aligned}
$$

- where the coefficient of the monomial $t^{i} \boldsymbol{s}^{j}$ is equal to the number of functions which weight is $\boldsymbol{t}^{i} \boldsymbol{s}^{j}$.

Polya theorem, proof

ßln equality (5) note that multiplication in its right part is the index of the element g , where variables z_{k} are substituted with

$$
\sum_{r \in R}(w(r))^{k}
$$

ßHence the sum of weights of all functions which under the action of element \mathbf{g} transform into itself is equal to

$$
\begin{equation*}
I_{g}\left(\sum_{r \in R} w(r), \sum_{r \in R}(w(r))^{2}, \ldots, \sum_{r \in R}(w(r))^{s}\right) \tag{7}
\end{equation*}
$$

Polya theorem, proof

BCalculating the sum (7) by all of the elements of group G and dividing the result by the order of the group G with the use of (6)

$$
\begin{aligned}
& P_{G}\left(\sum_{r \in R} w(r), \sum_{r \in R}(w(r))^{2}, \ldots, \sum_{r \in R}(w(r))^{k}, \ldots\right)= \\
& =\frac{1}{|G|} \sum_{g \in G} \sum_{w_{i}} w_{i} \psi_{i}(g)=\sum_{w_{i}} w_{i}\left(\frac{1}{|G|} \sum_{g \in G} \psi_{i}(g)\right)
\end{aligned}
$$

Polya theorem, proof

BFrom the Burnside lemma follows that with fixed value of the weight w the sum

$$
\sum_{g \in G} \psi \frac{1}{|G|_{i}}(g)
$$

equals to the number of equivalence classes which arose on the set of functions with weight w_{i} as a result of the action of the group \mathbf{G} on the set \mathbf{D}.
BHence the left part of the last equality equals to the sum of weights of all the equivalence classes.

Polya theorem, example

BWith the use of the theorem above find the number of different bicolor cubes with three black and three white faces.

$$
P_{G}=\frac{1}{24}\left(z_{1}^{6}+6 z_{1}^{2} z_{4}+3 z_{1}^{2} z_{2}^{2}+6 z_{2}^{3}+8 z_{3}^{2}\right)
$$

ßInto found before (1) cycle index of the rotation group of three-

$$
\begin{align*}
& \frac{\text { dimensional substitute } x^{i}+y^{i} \text { with } z_{i}}{\frac{1}{24}\left((x+y)^{6}+\right.} \begin{array}{c}
6(x+y)^{2}\left(x^{4}+y^{4}\right)+3(x+y)^{2}\left(x^{2}+y^{2}\right)^{2}+ \\
\left.+6\left(x^{2}+y^{2}\right)^{3}+8\left(x^{3}+y^{3}\right)^{2}\right)
\end{array}
\end{align*}
$$

Now find coefficient that will stand beside the monomial $x^{3} y^{3}$ after disclosure of brackets and reduction of similar terms.

Polya theorem, example

ßInto first summand $(x+y)^{6}$ monomial $x^{3} y^{3}$ included with coefficient 20,
ßin the second and fourth summands there are no such monomial as they contain only even variables x and y,
$ß$ into the third summand monomial $\boldsymbol{x}^{3} \boldsymbol{y}^{3}$ included with the coefficient 12,
ßinto fifth with coefficient 16.
ßHence coefficient of $x^{3} y^{3}$ in (8) is

$$
\frac{1}{24}(20+0+12+0+16)=2
$$

ßThus, the faces of three-dimensional cube can be colored in two different ways under condition that three faces will be colored in white and the other three in black.

Consequence, example

§Consequence

The number of equivalence classes is $\boldsymbol{P}_{G}(|\boldsymbol{R}|,|R|, \ldots,|R|, \ldots), \boldsymbol{P}_{G}$ - is a cycle index of the group.

ßExample

Find the number of different ways to color faces of the cube in three colors.

$$
P_{G}=\frac{1}{24}\left(z_{1}^{6}+6 z_{1}^{2} z_{4}+3 z_{1}^{2} z_{2}^{2}+6 z_{2}^{3}+8 z_{3}^{2}\right)
$$

Into cycle index of the rotation group each variable z_{i} substitute with number 3.

$$
\begin{aligned}
& P_{G}(3,3,3,3)=\frac{1}{24}\left(3^{6}+6 \cdot 3^{3}+3 \cdot 3^{4}+6 \cdot 3^{3}+8 \cdot 3^{2}\right)= \\
& \quad=57
\end{aligned}
$$

