Homework 2

1. Find a_{n}, if $a_{n}=-2 a_{n-1}+8 a_{n-2}+(-2)^{n}$ and $a_{1}=0, a_{2}=1$
2. Find the asymptotic behavior of the number of non-negative integer solutions of the equation $\sum_{i=1}^{m} i \cdot x_{i}=n, n \rightarrow \infty$
3. Let us assume that $\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{x})$ - polynomials with integer coefficients, $\mathrm{deg} B(x)=k$, $f(x)=\sum_{n=0}^{\infty} f_{n} x^{n}=\frac{A(x)}{B(x)}$. Show that starting with some n_{0} coefficients f_{n} satisfy therecurrence relation $f_{n}=\sum_{i=1}^{k} c_{k} f_{n-k}$ with constant c_{k}.
4. Find the number of sequences of $0,1,2$ and 3 with length n, in which each block of 1 has even length and the length of the blocks of 2 and 3 are multiples of three.
5. How many ways are there to fill a rectangle of height 1 and length n, using tilesof height 1 of the following types:

6. Find the number of n-digit decimal numbers in which there is no number 5 after number 2 .
