Graph coloring, vertex coloring

Vertex colorings

ß A (proper) vertex k-coloring (or \boldsymbol{k}-coloring) of a simple graph G is a function

$$
f: V G \rightarrow\{1, \ldots, k\}
$$

such that adjacent vertices are assigned different numbers.
B Quite often the set $\{\mathbf{1}, \ldots, \boldsymbol{k}\}$ is regarded as a set of colors.
B A coloring of a graph is a \boldsymbol{k}-coloring for some integer \boldsymbol{k}.
B An improper coloring of a graph permits two adjacent vertices to be colored the same.
B A graph is k-vertex colorable (or k-colorable) if it has a vertex k-coloring.

Graph coloring, vertex coloring

B The vertex chromatic number or (chromatic number) $\chi(\boldsymbol{G})$ of a graph \boldsymbol{G} is the minimum number \boldsymbol{k} such that \boldsymbol{G} is \boldsymbol{k}-vertex colorable;
B that is, $\chi(\boldsymbol{G})$ is the smallest number of colors needed to color the vertices of G so that no adjacent vertices have the same color.
B A graph G is \boldsymbol{k}-chromatic if $\chi(\boldsymbol{G})=\boldsymbol{k}$.
B A graph G is chromatically \boldsymbol{k}-critical if G is \boldsymbol{k}-chromatic and if $\chi(\boldsymbol{G}-\boldsymbol{e})=\boldsymbol{k}-\mathbf{1}$ for each edge of \boldsymbol{G}.
\& An obstruction to k-coloring is a chromatically $(\boldsymbol{k}+\mathbf{1})$ critical graph, when that graph is regarded as a subgraph of other graphs, and thereby prevents them from having chromatic number \boldsymbol{k}.

Graph coloring, vertex coloring

B A (complete) obstruction set for \boldsymbol{k}-coloring is a set of chromatically $(\boldsymbol{k}+\mathbf{1})$ - critical graphs such that every graph that is not \boldsymbol{k}-colorable contains at least one of them as a subgraph.
B An elementary contraction of a simple graph G on the edge \boldsymbol{e}, denoted $\boldsymbol{G} \downarrow \boldsymbol{e}$ (or $\boldsymbol{G} \cdot \boldsymbol{e}$), is obtained by replacing the edge e and its two endpoints by one vertex adjacent to all the other vertices to which the endpoints were adjacent.
B A graph G is (combinatorially) contractible to a subgraph \boldsymbol{H} if \boldsymbol{H} can be obtained from \boldsymbol{G} by a sequence of elementary contractions.
B The chromatic polynomial of the graph G is the function $\pi G(t)$ whose value at the integer t is the number of different functions $V G \rightarrow\{\mathbf{1}, \ldots, t\}$ that are proper colorings of G.

Graph coloring, vertex coloring

B $\chi(\boldsymbol{G})=1$ if and only if the graph G is edgeless.
B $\chi(G)=2$ if and only if the graph is bipartite and its edgeset is nonempty.
B The four color theorem : If G is planar, then $\chi(\boldsymbol{G}) \leq 4$.
That is every planar graph has a proper coloring of its vertices with 4 or fewer colors.
B $\chi(\boldsymbol{G}) \leq \operatorname{diam}(\boldsymbol{G})$, where the diameter $\operatorname{diam}(\boldsymbol{G})$ is the length of a longest path in G.

Graph coloring, vertex coloring

Algorithm 1: Greedy coloring algorithm

input: a graph G with vertex list $v_{1}, v_{2}, \ldots, v_{n}$
$\mathrm{c}:=0$ \{Initialize color at "color 0 " $\}$
while some vertex still has no color
$c:=c+1$ \{Get the next unused color\}
for i : = 1 to $n\{$ Assign the new color to as many vertices as possible\}
if v_{i} is uncolored and no neighbor of v_{i} has color c then assign color c to v_{i}

Graph coloring, vertex coloring

B The greedy coloring algorithm produces a vertex coloring of a graph \boldsymbol{G},whose vertices are ordered. (It is called "greedy" because once a color is assigned, it is never changed.)
B The number of colors it assigns depends on the vertex ordering, and it is not necessarily the minimum possible.
ß At least one ordering of the vertices of a graph G yields $\chi(\boldsymbol{G})$ under the greedy algorithm.

Example

Applying the greedy coloring algorithm, with the vertices considered in cyclic order around the 8 -cycle, yields a 3 -coloring. Since this graph contains an odd cycle (a 5 cycle), it can't be 2-colored. Thus, $\chi=3$.

Graph coloring, vertex coloring

Brooks' theorem: In a connected graph in which every vertex has at most Δ neighbors, the vertices can be colored with only Δ colors, except for two cases, complete graphs and cycle graphs of odd length, which require $\Delta+\mathbf{1}$ colors.
Proof
B If the graph is not biconnected, its biconnected components may be colored separately and then the colorings combined.
B If the graph has a vertex v with degree less than Δ, then a greedy coloring algorithm that colors vertices farther from v before closer ones uses at most Δ colors.
B Therefore, the most difficult case of the proof concerns biconnected Δ-regular graphs with $\Delta \geq 3$.

Graph coloring, vertex coloring

ß In this case, one can find a spanning tree such that two nonadjacent neighbors u and w of the root v are leaves in the tree.
\& A greedy coloring starting from u and w and processing the remaining vertices of the spanning tree in bottom-up order, ending at v, uses at most Δ colors.
\& For, when every vertex other than v is colored, it has an uncolored parent, so its already-colored neighbors cannot use up all the free colors, while at v the two neighbors u and w have equal colors so again a free color remains for v itself.

Graph coloring, edge coloring

B An edge coloring of a graph is an assignment of colors to its edges such that adjacent edges receive different colors.
B A graph G is \boldsymbol{k}-edge colorable if there is an edge coloring of G using at most \boldsymbol{k} colors.
B The edge chromatic number $\chi^{\prime}(\boldsymbol{G})$ of a graph G is the minimum \boldsymbol{k} such that \boldsymbol{G} is k-edge colorable.
B If $\chi^{\prime}(\boldsymbol{G})=\boldsymbol{k}$, then \boldsymbol{G} is edge \boldsymbol{k}-chromatic.
B Chromatic index is a synonym for edge chromatic number.
B A graph is edge-chromatically k-critical if it is edge \boldsymbol{k} chromatic and $\chi^{\prime}(\boldsymbol{G}-\boldsymbol{e})=\mathbf{X}^{\prime}(\boldsymbol{G})-\mathbf{1}$ for every edge \boldsymbol{e} of G.

Graph coloring, edge coloring

B For a graph \boldsymbol{G}, the line graph $L(\boldsymbol{G})$ has as vertices the edges of G, with two vertices adjacent in $L(G)$ if and only if the corresponding edges are adjacent in \boldsymbol{G}.
Vizing's theorem
$\Delta(\boldsymbol{G}) \leq \chi^{\prime}(\boldsymbol{G}) \leq \Delta(\boldsymbol{G})+\mathbf{1}$ for any simple graph \boldsymbol{G}
where $\Delta(\boldsymbol{G})$ is the maximum degree of vertices in graph \boldsymbol{G}.

Proof

B The inequality $\Delta(\boldsymbol{G}) \leq \chi^{\prime}(\boldsymbol{G})$ being trivial, we show $\chi^{\prime}(\boldsymbol{G}) \leq \Delta(\boldsymbol{G})+\mathbf{1}$.
B To prove this inductively, it suffices to show for any simple graph G :
B Let v be a vertex such that v and all its neighbours have degree at most \boldsymbol{k}, while at most one neighbour has degree precisely \boldsymbol{k}. Then if $G-v$ is k-edge-colourable, also G is k -edge-colourable.

Graph coloring, edge coloring

B We prove (1) by induction on \boldsymbol{k}.
B We can assume that each neighbour u of v has degree $\boldsymbol{k}-\mathbf{1}$, except for one of degree \boldsymbol{k}, since otherwise we can add a new vertex w and an edge $\boldsymbol{u} \boldsymbol{w}$ without violating the conditions in (1).
B We can do this till all neighbours of v have degree $\boldsymbol{k}-\mathbf{1}$, except for one having degree \boldsymbol{k}.
B Consider any \boldsymbol{k}-edge-colouring of $\boldsymbol{G}-\boldsymbol{v}$.
B For $i=1, \ldots, k$, let X_{i} be the set of neighbours of v that are missed by colour i.
is So all but one neighbour of v is in precisely two of the X_{i}, and one neighbour is in precisely one $\boldsymbol{X}_{\boldsymbol{i}}$.

Graph coloring, edge coloring

B Hence

$$
\sum_{i=1}^{k}\left|X_{i}\right|=2 \operatorname{deg}(v)-1<2 k
$$

(2)

B We can assume that we have chosen the colouring such that

$$
\sum_{i=1}^{k}\left|X_{i}\right|^{2}
$$

is minimized.
B Then for all $i, j=1, \ldots, k$:

$$
\| X_{i}\left|-\left|X_{j}\right|\right| \leq 2
$$

Graph coloring, edge coloring

B For if, say, $\left|\boldsymbol{X}_{1}\right|>\left|\boldsymbol{X}_{2}\right|+2$, consider the subgraph \boldsymbol{H} made by all edges of colours 1 and 2.
B Each component of \boldsymbol{H} is a path or circuit. At least one component of \boldsymbol{H} contains more vertices in \boldsymbol{X}_{1} than in \boldsymbol{X}_{2}.
B This component is a path \boldsymbol{P} starting in $\boldsymbol{X}_{\mathbf{1}}$ and not ending in X_{2}.
B Exchanging colours 1 and 2 on P reduces $\left|X_{1}\right|^{2}+\left|X_{2}\right|^{2}$, contradicting our minimality assumption. This proves (3).
B This implies that there exists an i with $\left|\boldsymbol{X}_{i}\right|=1$, since otherwise by (2) and (3) each $\left|\boldsymbol{X}_{\boldsymbol{i}}\right|$ is $\mathbf{0}$ or $\mathbf{2}$, while their sum is odd, a contradiction.
is So we can assume $\left|\boldsymbol{X}_{\boldsymbol{k}}\right|=\mathbf{1}$, say $\boldsymbol{X}_{\boldsymbol{k}}:=\{\boldsymbol{u}\}$.

Graph coloring, edge coloring

B Let \mathbf{G}^{\prime} be the graph obtained from G by deleting edge vu and deleting all edges of colour \boldsymbol{k}. So $\boldsymbol{G}^{\prime}-\boldsymbol{v}$ is ($\boldsymbol{k}-\mathbf{1}$)-edge-coloured.
ß M oreover, in G^{\prime}, vertex vand all its neighbours have degree at most $\boldsymbol{k}-\mathbf{1}$, and at most one neighbour has degree $\boldsymbol{k}-1$.
B So by the induction hypothesis, \boldsymbol{G}^{\prime} is $(\boldsymbol{k}-\mathbf{1})$-edgecolourable.
\& Restoring colour \boldsymbol{k}, and giving edge $\boldsymbol{v} \boldsymbol{u}$ colour \boldsymbol{k}, gives a \boldsymbol{k} -edge-colouring of G.

Graph coloring, edge coloring

B Every edge coloring of a graph G can be interpreted as a vertex coloring of the associated line graph $L(G)$.
Thus, $\chi^{\prime}(\boldsymbol{G})=\chi(L(G))$.
is $\chi^{\prime}\left(K_{m, n}\right)=\max \{m, n\}$, if $m, n \geq 1$.
B If G is bipartite, then $\chi^{\prime}(\boldsymbol{G})=\Delta \max (\boldsymbol{G})$.
B $\chi^{\prime}\left(\boldsymbol{K}_{n}\right)=\boldsymbol{n}$ if n is odd; $\chi^{\prime}\left(\boldsymbol{K}_{n}\right)=\boldsymbol{n}-\mathbf{1}$ if n is even.

Graph coloring, edge coloring

Algorithm 2: Greedy edge-coloring algorithm input: a graph G with edge list $e_{1}, e_{2}, \ldots, e_{n}$
$\mathrm{c}:=0\{$ Initialize color at "color 0 " $\}$
while some edge still has no color
$\mathrm{c}:=\mathrm{c}+1$ \{Get the next unused color\}
for $i:=1$ to n
\{Assign the new color to as many edges as possible\}
if e_{i} is uncolored and no neighbor of e_{i} has color c then assign color c to e_{i}
\& The greedy edge-coloring algorithm (Algorithm 2) produces an edge-coloring of a graph G, whose vertices are ordered.
B The number of colors it assigns depordering, and it is not necessarily the minimum possible. ends on the vertex

Graph coloring, edge coloring

Example 1.

B The following three graphs are all edge 3-chromatic.
B None of them is edge-chromatically 3 -critical.
ß Since each edge graph has a vertex of degree three, no 2-edge-coloring is possible.

Graph coloring, edge coloring

Example 2.

B The following graph is 5-edge-chromatic.
B Since there are 14 edges, a 4-edge-coloring would have to give the same color to four of them.
B For this edge-coloring to be proper, these four edges would have to have no endpoints in common.
B That is impossible, because the graph has only seven vertices.

Graph coloring

ß The following table gives the chromatic numbers and edgechromatic numbers of the graphs in some common families.

Graph \mathbf{G}	$\chi(G)$	$\chi_{1}(G)$
Path graph $\boldsymbol{P}_{\boldsymbol{n}}, \boldsymbol{n} \geq \mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$
Cycle graph $\boldsymbol{C}_{n}, \boldsymbol{n}$ even, $\boldsymbol{n} \geq \mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$
Cycle graph $\boldsymbol{C}_{n}, \boldsymbol{n}$ odd, $\boldsymbol{n} \geq \mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$
Wheel W_{n}, \boldsymbol{n} even, $\boldsymbol{n} \geq \mathbf{4}$	$\mathbf{3}$	\mathbf{n}
Wheel W_{n}, \boldsymbol{n} odd, $\boldsymbol{n} \geq \mathbf{3}$	$\mathbf{4}$	\mathbf{n}
Complete graph $\boldsymbol{K}_{n}, \boldsymbol{n}$ even, $\boldsymbol{n} \geq \mathbf{2}$	\mathbf{n}	$\mathbf{n}-\mathbf{1}$
Complete graph $\boldsymbol{K}_{n}, \boldsymbol{n}$ odd $\boldsymbol{n} \geq \mathbf{3}$	\mathbf{n}	\mathbf{n}
Complete bipartite graph $\boldsymbol{K}_{m, n}, \boldsymbol{m}, \boldsymbol{n} \geq \mathbf{1}$	$\mathbf{2}$	$\max \{\mathbf{m}, \mathbf{n}\}$
Bipartite \boldsymbol{G}, at least one edge	$\mathbf{2}$	$\boldsymbol{\Delta m a x}(\mathbf{G})$

