Theorems

- § Matching (independent) edge set in a graph is a set of edges without common vertices.
- § A perfect matching is a matching which matches all vertices of the graph. That is, every vertex of the graph is incident to exactly one edge of the matching.
- S An edge cover of a graph G is a set of edges C such that each vertex in G is incident with at least one edge in C. The set C is said to cover the vertices of G.
- § Vertex cover is a subset of vertices such that in all edges at least one endpoint is in this subset.
- **§** Shadow *S*(*A*) of *A* is a subset of vertices, each of which is adjacent to at least one vertex of *A*.

Halls' theorem:

Given a bipartite graph, there is a perfect matching iff $|N(s)| \ge |S| \forall S \subseteq X$, where X is one of the sets of points of the graph.

Proof

This proof is with induction.

- **§** We take **n** the amount of vertices in **X**.
- § For n = 1 it is trivial, because we just have one vertex in each part, so we can match those vertices with one edge.
- **§** *S* is empty or contains one point and in both cases the amount of neighbors the same.

- § Now we assume that the statement is true for all graphs on k vertices in X. We want to prove that it is also true for k + 1 vertices in X.
- § Take vertex v in X, then there is at least one edge leaving v otherwise there won't be a perfect matching possible at all.

Now we consider 2 cases.

- § Case 1: Suppose $\forall S \subseteq X \{v\}$: $|N(S)| \ge |S| + 1$.
- § In this case we have slack so we can match v with that one edge and then there is still a perfect matching for the other vertices, because we then have a graph of size k where $|N(S)| \ge |S|$ holds, and we assumed that the statement is true.
- § The +1 disappears because we have matched v to some vertex and in the worst case that was a neighbor of all other vertices in X as well. Qed

- § Case 2: In this case there exists some subset $S \subseteq X v$ such that |N(S)| = |S|.
- § Pick a minimum cardinality set satisfying this property. By induction and the minimality of S we know that S can be matched to N(S).
- § Now look at X S, for this specific S, take a set $S' \subseteq X S$. Then this S' needs to have neighbors outside N(S), otherwise $S \cup S'$ doesn't suffice the Hall's condition.
- § It has to have |S'| outside N(S). If we then look at the rest, by induction those points also have a matching in X N(S).
- So combining this matchings we have a full matching. This proves the statement. QED

Example

We have a usual deck of 52 cards.

- § Divide deck into 13 arbitrary piles of 4 cards.
- § Prove that it is always possible to get exactly the set A, 2, 3, ..., J, Q, K by picking one card from each pile.

We can transform this problem into a bipartite graph.

- Solutions of the side 13 vertices representing the piles and on the other side 13 vertices one for *A*, one for 2, etc.
- § Each vertex has degree 4 and we want a perfect matching. Take a set *S*, a subset of the piles, $4 \cdot |S|$ edges are leaving this set, but the receiving vertices have also degree 4, so $|N(S)| \ge \frac{number \ of \ edges}{4} = \frac{4|S|}{4} = |S|,$

otherwise there is a vertex with degree greater than 4.

§ So by Halls' theorem a perfect matching exists.

Definitions

- **§** Paths are said to be edge disjoint if they share no edges.
- § s-t paths are said to be vertex disjoint if they share no vertices other then s and t.
- § An antichain A of a poset P is a subset of elements of P such that for all $x, y \in A, x \leq y$ and $y \leq x$.
- S A chain cover of a poset *P* is a collection of chains whose union is *P*.

Vertex-connectivity

- § Let v and w be two non-adjacent vertices in a graph G.
- S A set S of vertices is a v-w separating set if v and w lie in different components of G S; that is, if every v-w path contains a vertex in S.
- § The minimum order of a v w separating set is called the v w connectivity and is denoted by k(v, w).
- § For any two vertices v and w, a collection of v-w paths is called internally disjoint if the paths are pairwise disjoint except for the vertices v and w.
- § The maximum number of internally disjoint v w paths is denoted by $\mu(v, w)$.
- § Since each path in such a set must contain a different vertex from every v w separating set, it is clear that $\mu(v, w) \leq k(v, w)$.

Menger's Theorem

If v and w are non-adjacent vertices in a graph G, then the maximum number of internally disjoint v - w paths equals the minimum number of vertices in a v - w separating set.

Proof

S Let *v* and *w* be a pair of non-adjacent vertices in a graph *G*. As observed earlier μ(*v*, *w*) ≤ *k*(*v*, *w*) since a
v−*w* separator must contain at least one vertex from each of the paths in any collection of internally disjoint *v*−*w* paths.

- § We now show that $\mu(v, w) \ge k(v, w)$.
- § Let k = k(v, w). Then no set of fewer than k vertices separates v and w.
- § We proceed to show, by induction on k, that if $k(v, w) \ge k$, then $\mu(v, w) \ge k$.
- § If k = 1, then there is a v w path.
- § Assume thus that $k \ge 1$ and that if $k(v, w) \ge k$ that $\mu(v, w) \ge k$.
- § Assume further that v and w are non-adjacent vertices in G with $k(v, w) \ge k + 1$.
- § By the induction hypothesis, there are k internally disjoint v-w paths P_1, P_2, \dots, P_k .

- § Since the collection of vertices that follow v on these paths (there are k of these) do not separate v and w, there is a v w path P whose initial edge is not on any P_i .
- § Let x be the first vertex after v on P that belongs to some P_i .
- § Let P_{k+1} be the v-x subpath of P.
- § Assume that P_1, P_2, \dots, P_{k+1} have been chosen in such a way that the distance from x to w in G v is a minimum.
- § If x = w, then we have the desired collection of k + 1 internally disjoint paths.
- § Assume therefore that $x \neq w$.
- § Again, by the induction hypothesis, there are k internally disjoint v w paths Q_1, Q_2, \dots, Q_k in G x.

- Solution Sector Sect
- § Let *H* be the graph consisting of the paths Q_1, Q_2, \ldots, Q_k together with the vertex *x*.
- § Choose some P_j for $1 \le j \le k + 1$, whose initial edge is not in H.
- § Let y be the first vertex on P_i after v which is in H.
- § If y = w, then we have the desired collection of k + 1 internally disjoint v w paths.
- § So assume $y \neq w$.
- § If y = x, then let **R** be the shortest x w path in G v.

- § Let z be the first vertex on R that is on some Q_i .
- § Then the distance in G v from z to w is less than the distance from x to w.
- § This contradicts our choice of $P_1, P_2, \ldots, P_{k+1}$. So $y \neq x$.
- § If y is on some Q_i for $1 \le i \le k$, then the v-y subpath of Q_t has an edge in B.
- § Otherwise, two paths from among P_1, P_2, \dots, P_{k+1} intersect at a vertex other than v, w or x.
- § If we replace the v-v subpath of Q_i by the v-v subpath of P_j , we get a collection of k internally disjoint v-w paths in G-x that uses fewer edges from B than Q_1, Q_2, \ldots, Q_k do, which is a contradiction.

Edge-connectivity

- § The maximum number of edge-disjoint v w paths in G is denoted by v(v, w). Since each such path must contain an edge from every v w edge-separating set, $v(v, w) \leq \lambda(v, w)$.
- § Theorem For any vertices v and w in a graph G, $v(v,w) = \lambda(v,w)$.
- § One may well ask whether there always exists a system of v(v, w) edge-disjoint paths that contains a system of $\mu(v, w)$ internally disjoint v-w paths.

For the graph G, $\mu(v, w) = 3$ and $\nu(v, w) = 5$,

- § but no set of three internally disjoint v w paths is contained in a set of five edge-disjoint v w paths.
- § To see this, note that every set of three internally disjoint v wpaths contains all five edges a, b, c, d, e of a minimal v - w edgeseparating set and thus cannot be extended to five edgedisjoint v - w paths.
- § If v and w are not adjacent, then both deg v and deg w may exceed $\kappa(v, w)$ by an arbitrarily large amount.

- § Theorem: Every non-null graph has adjacent vertices v and w for which $\mu(v, w) = \min\{\deg v, \deg w\}$.
- Solution Service An immediate consequence of the above theorem is that there exist vertices v and w such that

 $\mu(\boldsymbol{v},\boldsymbol{w}) = \boldsymbol{v}(\boldsymbol{v},\boldsymbol{w}) = \boldsymbol{\lambda}(\boldsymbol{v},\boldsymbol{w}) = \min\{\deg \boldsymbol{v}, \deg \boldsymbol{w}\}.$

- § Note that this theorem is not true for multigraphs, since a multigraph formed from a cycle by doubling every edge does not satisfy the theorem.
- § However, it is true that every multigraph *M* has adjacent vertices v and w for which $v(v, w) = \min\{\deg v, \deg w\}$.

- § The edge-connectivity $\lambda(G)$ of a non-trivial graph G is the smallest number of edges whose deletion produces a disconnected graph, while that of the trivial graph is defined to be 0.
- **§** It is not difficult to see that

 $\lambda(G) = \min\{\lambda(v, w) : v, w \in V(G)\}.$

A graph G is *l*-edge-connected if $\lambda(G) \ge l$.

Dilworth's theorem

Dilworth's theorem: In a finite partial order, the size of a maximum antichain is equal to the minimum number of chains needed to cover its elements.

Proof

- **§** Let **P** be a finite partially ordered set.
- § The theorem holds trivially if *P* is empty. So, assume that *P* has at least one element, and let *a* be a maximal element of *P*.
- § By induction, we assume that for some integer k the partially ordered set $P' = P \setminus \{a\}$ can be covered by k disjoint chains C_1, \ldots, C_k and has at least one antichain A_0 of size k.

Dilworth's theorem

- § Clearly, $A_0 \cap C_i \neq 0$ for i = 1, 2, ..., k.
- § For i = 1, 2, ..., k, let x_i be the maximal element in C_i that belongs to an antichain of size k in P', and set

$$A = \{x_1, x_2, \dots, x_k\}.$$

- **§** We claim that **A** is an antichain.
- § Let A_i be an antichain of size k that contains x_i .
- § Fix arbitrary distinct indices *i* and *j*. Then $A_i \cap C_j \neq 0$.
- § Let $y \in A_i \cap C_j$. Then $y \le x_j$, by the definition of x_j .
- § This implies that $x_i \ge x_j$, since $x_i \ge y$. By interchanging the roles of *i* and *j* in this argument we also have $x_j \ge x_i$. This verifies that *A* is an antichain.

Dilworth's theorem

- § We now return to **P**. Suppose first that $a \ge x_i$ for some $i \in \{1, 2, ..., k\}$.
- § Let *K* be the chain $\{a\} \cup \{z \in C_i : z \le x_i\}$. Then by the choice of x_i , $P \setminus K$ does not have an antichain of size *k*.
- § Induction then implies that $P \setminus K$ can be covered by k 1 disjoint chains since $A \setminus \{x_i\}$ is an antichain of size k 1 in $P \setminus K$.
- **§** Thus, **P** can be covered by **k** disjoint chains, as required.
- § Next, if $a \ge x_i$ for each $i \in \{1, 2, ..., k\}$, then $A \cup \{a\}$ is an antichain of size k + 1 in P (since a is maximal in P).
- § Now *P* can be covered by the k + 1 chains $\{a\}$, C_1, C_2, \dots, C_k , completing the proof.