Theorems

§ Matching (independent) edge set in a graph is a set
of edges without common vertices.

§ A perfect matching is a matching which matches all
vertices of the graph. That is, every vertex of the graph
IS Incident to exactly one edge of the matching.

§ An edge cover of a graph G is a set of edges C such that
each vertex in G is incident with at least one edge in C. The
set C is said to cover the vertices of G.

§ Vertex cover is a subset of vertices such that in all edges at
least one endpoint is in this subset.

§ Shadow S(A) of A is a subset of vertices, each of which is
adjacent to at least one vertex of A.



Halls’ theorem

Halls’ theorem:

Given a bipartite graph, there is a perfect matching iff
IN(s)| = |S| VS € X, where X is one of the sets of points of
the graph.

Proof
This proof is with induction.
§ We take n the amount of vertices in X.

§ Formn = 1 itis trivial, because we just have one vertex in
each part, so we can match those vertices with one edge.

§ § Isempty or contains one point and in both cases the
amount of neighbors the same.
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§ Now we assume that the statement is true for all graphs on k
vertices in X. We want to prove that it is also true for k + 1

vertices in X.

§ Take vertex v in X, then there Is at least one edge leaving v
otherwise there won’t be a perfect matching possible at all.

Now we consider 2 cases.
§ Case 1:Suppose VS € X — {v}: [N(S)| = |S| + 1.

§ In this case we have slack so we can match v with that one
edge and then there is still a perfect matching for the other
vertices, because we then have a graph of size k where
IN(S)| = |S| holds, and we assumed that the statement is

true.

§ The +1 disappears because we have matched v to some
vertex and in the worst case that was a neighbor of all other

vertices in X as well. Qed
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§ Case 2: In this case there exists some subset S € X — v such
that IN(S)| = |S].

§ Pick a minimum cardinality set satisfying this property. By
Induction and the minimality of $ we know that S can be
matched to N(S).

§ Now look at X — §, for this specific S, takeasetS' € X — §.
Then this S’ needs to have neighbors outside N(§), otherwise
S U S’ doesn’t suffice the Hall’s condition.

§ Ithasto have |S’| outside N(S). If we then look at the rest,
by induction those points also have a matching in X — N(S).

§ So combining this matchings we have a full matching. This
proves the statement. QED
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Example
We have a usual deck of 52 cards.
§ Divide deck into 13 arbitrary piles of 4 cards.

§ Prove that it is always possible to get exactly the set
A, 2,3,...,],0Q, K by picking one card from each pile.

We can transform this problem into a bipartite graph.

§ On one side 13 vertices representing the piles and on the
other side 13 vertices — one for A, one for 2, etc.

§ Each vertex has degree 4 and we want a perfect matching.
Take a set S, a subset of the piles, 4-|S| edges are leaving
this set, but thbe recelglng veatlsges have also degree 4, so
|N(S)|>num er40fe ges _ | | |S|

otherwise there Is a vertex W|th degree greater than 4.

§ So by Halls’ theorem a perfect matching exists.




Menger’s theorem

Definitions
§ Paths are said to be edge disjoint if they share no edges.

§ s-t paths are said to be vertex disjoint if they share no
vertices other then s and t.

§ An antichain A of a poset P is a subset of elements of P
such thatforall x,y € A,x £ yand y £ x.

§ A chain cover of a poset P is a collection of chains whose
unionis P.
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Vertex-connectivity
§ Let v and w be two non-adjacent vertices in a graph G.

§ Aset S of vertices is a v— w separating set if v and w lie In

different components of G - S; that Is, if every v— w path
contains a vertexin S.

§ The minimum order of a v— w separating set is called the
v-w connectivity and is denoted by k(v, w).

§ For any two vertices v and w, a collection of v- w paths is
called internally disjoint if the paths are pairwise disjoint
except for the vertices v and w.

§ The maximum number of internally disjoint v- w paths is
denoted by (v, w).

§ Since each path in such a set must contain a different vertex

from every v- w separating set, it is clear that
wo,w) < k(v,w).



Menger’s theorem

Menger’s Theorem

If v and w are non-adjacent vertices in a graph G, then the
maximum number of internally disjoint v- w paths equals the
minimum number of vertices in a v— w separating set.

Proof

§ Let v and w be a pair of non-adjacent vertices in a graph G.
As observed earlier u(v,w) < k(v,w) since a
v-w separator must contain at least one vertex from each of

the paths in any collection of internally disjoint v— w paths.
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§ We now show that u(v,w) = k(v,w).

§ Letk = k(v,w).Then no set of fewer than k vertices
separates v and w.

§ We proceed to show, by induction on k, that if k(v,w) = k,
then u(v,w) = k.

§ If k = 1, thenthereisawv-w path.

§ Assumethusthatk = 1andthatif k(v,w) > k that
wv,w) = k.

§ Assume further that v and w are non-adjacent vertices in G
with k(v,w) = k + 1.

§ By the induction hypothesis, there are k internally disjoint
v-w paths P4, P, ..., Py.
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§ Since the collection of vertices that follow v on these paths

(there are k of these) do not separate v and w, thereisav-w
path P whose initial edge is not on any P; .

§ Let x be the first vertex after v on P that belongs to some P;.

§ Let P4 be the v-x subpath of P.

§ Assume that P4, P,,..., P41 have been chosen in such a way
that the distance fromxtow in G — v Isa minimum.

§ If x = w, then we have the desired collectionof k + 1
Internally disjoint paths.

§ Assume therefore that x = w.

§ Again, by the induction hypothesis, there are k internally
disjoint v—-w paths Q¢,Q,,...,Q, IN G — x.
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§ Assume that these paths have been chosen so that a
minimum number of edges not on any of the paths P; are
used.

§ Let H be the graph consisting of the paths
Q4,0Q,,...,0Q; together with the vertex x.

§ Choose some P; for 1 < j < k + 1, whose Initial edge is not
In H.
§ Lety be the first vertex on P; after v whichisin H.

§ If y = w, then we have the desired collection of k + 1
Internally disjoint v- w paths.

§ Soassumey # w.
§ If y = x, then let R be the shortest x- w path in G — v.
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§ Let z be the first vertex on R that is on some Q; .

§ Then the distance in G — v from z to w is less than the
distance from x to w.

§ This contradicts our choice of P4, P5,...,P;4+1.S0y # x.

§ Ifyisonsome Q; for 1 < i < k, then the v-y subpath of
Q. has an edge in B.

§ Otherwise, two paths from among P4, P,, ..., Py
Intersect at a vertex other than v, w or x.

§ If we replace the v- y subpath of Q; by the v- y subpath of
P; , we get a collection of k internally disjoint v—w paths in

G — x that uses fewer edges from B than Q4, Q», ..., Q; do,
which is a contradiction.
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Edge-connectivity

§ The maximum number of edge-disjoint v—w pathsin G is
denoted by v(v, w). Since each such path must contain an
edge from every v- w edge-separating set, v(v,w) <
A(v,w).

§ Theorem For any vertices v and w in a graph G,
v(v,w) = A(v,w).

§ One may well ask whether there always exists a system of
v(v, w) edge-disjoint paths that contains a system of
u(v, w) internally disjoint v- w paths.
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For the graph G,
u(v,w) = 3 and
v(v,w) = 5,

but no set of three internally disjoint v— w paths is contained in
a set of five edge-disjoint v— w paths.

To see this, note that every set of three internally disjoint v-w

paths contains all five edges a, b, ¢, d, e of a minimal v- w edge-
separating set and thus cannot be extended to five edgedisjoint

v-w paths.

If v and w are not adjacent, then both deg v and deg w may
exceed k (v, w) by an arbitrarily large amount.
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Theorem: Every non-null graph has adjacent vertices v and
w for which u(v,w) = min{degv, degw}.

An immediate consequence of the above theorem is that
there exist vertices v and w such that
uw(v,w) = v(v,w) = A(v,w) = min{degv, degw}.

Note that this theorem is not true for multigraphs, since a
multigraph formed from a cycle by doubling every edge
does not satisfy the theorem.

However, it Is true that every multigraph M has adjacent
vertices v and w for which v(v,w) = min{degv,degw}.
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§ The edge-connectivity A(G) of a non-trivial graph G is the
smallest number of edges whose deletion produces a
disconnected graph, while that of the trivial graph is
defined to be 0.

§ It is not difficult to see that
A(G) = min{A(v,w): v,w € V (G)}.
A graph G is l-edge-connected if A(G) = L.



Dilworth’s theorem

Dilworth’s theorem: In a finite partial order, the size of a
maximum antichain is equal to the minimum number of
chains needed to cover its elements.

Proof
§ Let P be afinite partially ordered set.

§ The theorem holds trivially if P is empty. So, assume
that P has at least one element, and let a be a
maximal element of P.

§ By induction, we assume that for some integer k the
partially ordered set P’ = P\{a} can be covered
by k disjoint chains C4, ..., C;, and has at least one
antichain A,of size k.
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§ Clearly,AgnC; #0 fori=1,2, ..., k.

§ Fori=1,2,...,k, let x; be the maximal element in C; that
belongs to an antichain of size k in P’, and set

A={xq1,x3,..,X}.
We claim that A is an antichain.
Let A; be an antichain of size k that contains x;.
Fix arbitrary distinct indices i and j. Then 4; N C; # 0.
Lety € A; N C;. Then y < x;, by the definition of x;.

This implies that x; £ x;, since x; £ y. By interchanging
the roles of i and j in this argument we also have x; = x;.
This verifies that A is an antichain.

w W W W W
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§ We now return to P. Suppose first that a = x; for some
ief{1,2, ..k}

§ Let K bethechain{a}u{z e C;:z < x;}.

Then by the choice of x;, P\ K does not have an antichain of
size k.

§ Induction then implies that P\ K can be covered by
k — 1 disjoint chains since A\{x;} Is an antichain of size
k—1inP\K.

§ Thus, P can be covered by k disjoint chains, as required.

§ Next,ifa = x; foreachi € {1,2,...,k}, then AU {a}isan
antichain of size k + 1 in P (since a is maximal in P).

§ Now P can be covered by the k + 1 chains {a},
Cq,C,, ..., C, completing the proof.



