
Theorems

§ Matching (independent) edge set in a graph is a set 
of edges without common vertices.

§ A perfect matching is a matching which matches all 
vertices of the graph. That is, every vertex of the graph 
is incident to exactly one edge of the matching.

§ An edge cover of a graph G is a set of edges C such that 
each vertex in G is incident with at least one edge in C. The 
set C is said to cover the vertices of G.

§ Vertex cover is a subset of vertices such that in all edges at 
least one endpoint is in this subset.

§ Shadow of is a subset of vertices, each of which is 
adjacent to at least one vertex of 



Halls’ theorem

Halls’ theorem:
Given a bipartite graph, there is a perfect matching iff

where is one of the sets of points of 
the graph.
Proof
This proof is with induction. 
§ We take n the amount of vertices in .
§ For it is trivial, because we just have one vertex in 

each part, so we can match those vertices with one edge.
§ is empty or contains one point and in both cases the 

amount of neighbors the same.  



Halls’ theorem
§ Now we assume that the statement is true for all graphs on 

vertices in . We want to prove that it is also true for 
vertices in .

§ Take vertex in , then there is at least one edge leaving 
otherwise there won’t be a perfect matching possible at all. 

Now we consider 2 cases.
§ Case 1: Suppose 
§ In this case we have slack so we can match with that one 

edge and then there is still a perfect matching for the other 
vertices, because we then have a graph of size where 

holds, and we assumed that the statement is 
true.

§ The disappears because we have matched to some 
vertex and in the worst case that was a neighbor of all other 
vertices in as well. Qed



Halls’ theorem

§ Case 2: In this case there exists some subset such 
that . 

§ Pick a minimum cardinality set satisfying this property. By 
induction and the minimality of we know that can be 
matched to N(S).

§ Now look at , for this specific , take a set . 
Then this needs to have neighbors outside otherwise 

doesn’t suffice the Hall’s condition.
§ It has to have outside If we then look at the rest, 

by induction those points also have a matching in 
§ So combining this matchings we have a full matching. This 

proves the statement. QED



Halls’ theorem

Example
We have a usual deck of 52 cards. 
§ Divide deck into 13 arbitrary piles of 4 cards.
§ Prove that it is always possible to get exactly the set

by picking one card from each pile.
We can transform this problem into a bipartite graph. 
§ On one side 13 vertices representing the piles and on the 

other side 13 vertices – one for , one for 2, etc. 
§ Each vertex has degree 4 and we want a perfect matching. 

Take a set , a subset of the piles, 4 |S| edges are leaving 
this set, but the receiving vertices have also degree 4, so 

otherwise there is a vertex with degree greater than 4. 
§ So by Halls’ theorem a perfect matching exists.



Menger’s theorem

Definitions
§ Paths are said to be edge disjoint if they share no edges.
§ s-t paths are said to be vertex disjoint if they share no 

vertices other then s and t.
§ An antichain of a poset is a subset of elements of 

such that for all 
§ A chain cover of a poset is a collection of chains whose 

union is .



Menger’s theorem

Vertex-connectivity
§ Let and be two non-adjacent vertices in a graph .
§ A set S of vertices is a separating set if and lie in 

different components of G − S; that is, if every path 
contains a vertex in . 

§ The minimum order of a separating set is called the 
connectivity and is denoted by 

§ For any two vertices and , a collection of paths is 
called internally disjoint if the paths are pairwise disjoint 
except for the vertices and . 

§ The maximum number of internally disjoint paths is 
denoted by 

§ Since each path in such a set must contain a different vertex 
from every separating set, it is clear that



Menger’s theorem

Menger’s Theorem
If and are non-adjacent vertices in a graph , then the 
maximum number of internally disjoint paths equals the 
minimum number of vertices in a separating set.

Proof
§ Let and be a pair of non-adjacent vertices in a graph . 

As observed earlier since a 
separator must contain at least one vertex from each of 

the paths in any collection of internally disjoint paths. 



Menger’s theorem

§ We now show that 
§ Let Then no set of fewer than vertices 

separates and . 
§ We proceed to show, by induction on , that if , 

then . 
§ If , then there is a path. 
§ Assume thus that and that if that 

. 
§ Assume further that and are non-adjacent vertices in 

with . 
§ By the induction hypothesis, there are internally disjoint 

paths . 



Menger’s theorem

§ Since the collection of vertices that follow on these paths 
(there are of these) do not separate and , there is a 
path whose initial edge is not on any . 

§ Let be the first vertex after on that belongs to some .
§ Let be the subpath of . 
§ Assume that have been chosen in such a way 

that the distance from to in is a minimum. 
§ If , then we have the desired collection of 

internally disjoint paths. 
§ Assume therefore that . 
§ Again, by the induction hypothesis, there are internally 

disjoint paths in . 



Menger’s theorem

§ Assume that these paths have been chosen so that a 
minimum number of edges not on any of the paths are 
used. 

§ Let be the graph consisting of the paths 
together with the vertex . 

§ Choose some for , whose initial edge is not 
in . 

§ Let be the first vertex on after which is in . 
§ If , then we have the desired collection of 

internally disjoint paths. 
§ So assume . 
§ If , then let be the shortest path in . 



Menger’s theorem

§ Let be the first vertex on that is on some . 
§ Then the distance in from to is less than the 

distance from to . 
§ This contradicts our choice of . So . 
§ If is on some for , then the subpath of 

has an edge in . 
§ Otherwise, two paths from among 

intersect at a vertex other than , or . 
§ If we replace the subpath of by the subpath of 

, we get a collection of internally disjoint paths in 
that uses fewer edges from than do, 

which is a contradiction.



Menger’s theorem

Edge-connectivity
§ The maximum number of edge-disjoint paths in G is 

denoted by Since each such path must contain an 
edge from every edge-separating set, 

§ Theorem For any vertices and in a graph , 

§ One may well ask whether there always exists a system of 
edge-disjoint paths that contains a system of 
internally disjoint paths. 



Menger’s theorem

§ but no set of three internally disjoint paths is contained in 
a set of five edge-disjoint paths. 

§ To see this, note that every set of three internally disjoint 
paths contains all five edges of a minimal edge-
separating set and thus cannot be extended to five edgedisjoint

paths. 
§ If and are not adjacent, then both and may 

exceed by an arbitrarily large amount. 

For the graph , 
and 
,



Menger’s theorem
§ Theorem: Every non-null graph has adjacent vertices and 

for which 
§ An immediate consequence of the above theorem is that 

there exist vertices and such that 
. 

§ Note that this theorem is not true for multigraphs, since a 
multigraph formed from a cycle by doubling every edge 
does not satisfy the theorem. 

§ However, it is true that every multigraph has adjacent 
vertices v and w for which 



Menger’s theorem
§ The edge-connectivity ) of a non-trivial graph is the 

smallest number of edges whose deletion produces a 
disconnected graph, while that of the trivial graph is 
defined to be 0. 

§ It is not difficult to see that
. 

A graph G is -edge-connected if 



Dilworth’s theorem
Dilworth’s theorem: In a finite partial order, the size of a 
maximum antichain is equal to the minimum number of 
chains needed to cover its elements.
Proof
§ Let be a finite partially ordered set. 
§ The theorem holds trivially if is empty. So, assume 

that has at least one element, and let be a 
maximal element of .

§ By induction, we assume that for some integer the 
partially ordered set can be covered 
by disjoint chains and has at least one 
antichain of size . 



Dilworth’s theorem
§ Clearly, for .
§ For , let be the maximal element in that 

belongs to an antichain of size in , and set
.

§ We claim that is an antichain. 
§ Let be an antichain of size k that contains . 
§ Fix arbitrary distinct indices and . Then .
§ Let . Then , by the definition of . 
§ This implies that , since . By interchanging 

the roles of and in this argument we also have . 
This verifies that is an antichain.



Dilworth’s theorem
§ We now return to . Suppose first that for some

§ Let be the chain . 
Then by the choice of does not have an antichain of 
size . 
§ Induction then implies that can be covered by 

disjoint chains since is an antichain of size
in . 

§ Thus, can be covered by disjoint chains, as required.
§ Next, if for each then is an 

antichain of size in (since is maximal in ). 
§ Now can be covered by the chains , 

, completing the proof.


