Theorems

B Matching (independent) edge set in a graph is a set of edges without common vertices.
B A perfect matching is a matching which matches all vertices of the graph. That is, every vertex of the graph is incident to exactly one edge of the matching.
B An edge cover of a graph G is a set of edges C such that each vertex in G is incident with at least one edge in C. The set C is said to cover the vertices of G .
B Vertex cover is a subset of vertices such that in all edges at least one endpoint is in this subset.
B Shadow $S(A)$ of A is a subset of vertices, each of which is adjacent to at least one vertex of \boldsymbol{A}.

Halls' theorem

Halls' theorem:

Given a bipartite graph, there is a perfect matching iff $|N(s)| \geq|S| \forall S \subseteq X$, where X is one of the sets of points of the graph.

Proof

This proof is with induction.
$ß$ We take n the amount of vertices in \boldsymbol{X}.
B For $\boldsymbol{n}=\mathbf{1}$ it is trivial, because we just have one vertex in each part, so we can match those vertices with one edge.
BS S is empty or contains one point and in both cases the amount of neighbors the same.

Halls' theorem

B Now we assume that the statement is true for all graphs on \boldsymbol{k} vertices in \boldsymbol{X}. We want to prove that it is also true for $\boldsymbol{k}+\mathbf{1}$ vertices in \boldsymbol{X}.
B Take vertex v in X, then there is at least one edge leaving v otherwise there won't be a perfect matching possible at all.
Now we consider 2 cases.
B Case 1: Suppose $\forall S \subseteq X-\{v\}:|N(S)| \geq|S|+1$.
B In this case we have slack so we can match v with that one edge and then there is still a perfect matching for the other vertices, because we then have a graph of size k where $|N(S)| \geq|S|$ holds, and we assumed that the statement is true.
is The +1 disappears because we have matched v to some vertex and in the worst case that was a neighbor of all other vertices in X as well. Qed

Halls' theorem

ß Case 2: In this case there exists some subset $S \subseteq X-v$ such that $|N(S)|=|S|$.
\& Pick a minimum cardinality set satisfying this property. By induction and the minimality of S we know that S can be matched to $\mathrm{N}(\mathrm{S})$.
ß Now look at $\boldsymbol{X}-\boldsymbol{S}$, for this specific \boldsymbol{S}, take a set $\boldsymbol{S}^{\prime} \subseteq \boldsymbol{X}-\boldsymbol{S}$. Then this S^{\prime} needs to have neighbors outside $N(S)$, otherwise $S \cup S^{\prime}$ doesn't suffice the Hall's condition.
B It has to have $\left|S^{\prime}\right|$ outside $N(S)$. If we then look at the rest, by induction those points also have a matching in $X-N(S)$.
ß So combining this matchings we have a full matching. This proves the statement. QED

Halls' theorem

Example

We have a usual deck of 52 cards.
ß Divide deck into 13 arbitrary piles of 4 cards.
B Prove that it is always possible to get exactly the set $A, 2,3, \ldots, J, Q, K$ by picking one card from each pile.
We can transform this problem into a bipartite graph.
B On one side 13 vertices representing the piles and on the other side 13 vertices - one for A, one for 2 , etc.
B Each vertex has degree 4 and we want a perfect matching. Take a set S, a subset of the piles, $4 \cdot|\mathbf{S}|$ edges are leaving this set, but the receiving vertices have also degree 4, so $|N(S)| \geq \frac{\text { number of edges }}{4}=\frac{4|S|}{4}=|S|$, otherwise there is a vertex with degree greater than 4.
ß So by Halls' theorem a perfect matching exists.

M enger's theorem

Definitions

B Paths are said to be edge disjoint if they share no edges.
B s-t paths are said to be vertex disjoint if they share no vertices other then s and t.
B An antichain A of a poset P is a subset of elements of P such that for all $x, y \in A, x \neq y$ and $y \nsubseteq x$.
B A chain cover of a poset P is a collection of chains whose union is P.

Menger's theorem

Vertex-connectivity

$ß$ Let \boldsymbol{v} and w be two non-adjacent vertices in a graph \boldsymbol{G}.
B A set S of vertices is a $v-w$ separating set if v and w lie in different components of $\mathbf{G}-\mathrm{S}$; that is, if every $\boldsymbol{v} \boldsymbol{-} \boldsymbol{w}$ path contains a vertex in S.
\& The minimum order of a $v-w$ separating set is called the $v-w$ connectivity and is denoted by $\boldsymbol{k}(\boldsymbol{v}, \boldsymbol{w})$.
B For any two vertices v and w, a collection of v - w paths is called internally disjoint if the paths are pairwise disjoint except for the vertices v and w.
is The maximum number of internally disjoint $v-w$ paths is denoted by $\mu(\boldsymbol{v}, \boldsymbol{w})$.
A Since each path in such a set must contain a different vertex from every $v-w$ separating set, it is clear that $\mu(\boldsymbol{v}, \boldsymbol{w}) \leq \boldsymbol{k}(\boldsymbol{v}, \boldsymbol{w})$.

Menger's theorem

Menger's Theorem

If v and w are non-adjacent vertices in a graph \boldsymbol{G}, then the maximum number of internally disjoint $v-w$ paths equals the minimum number of vertices in a $v-w$ separating set.

Proof

B Let v and w be a pair of non-adjacent vertices in a graph G. As observed earlier $\mu(\boldsymbol{v}, \boldsymbol{w}) \leq \boldsymbol{k}(\boldsymbol{v}, \boldsymbol{w})$ since a $v-w$ separator must contain at least one vertex from each of the paths in any collection of internally disjoint $v-w$ paths.

M enger's theorem

B We now show that $\mu(\boldsymbol{v}, \boldsymbol{w}) \geq \boldsymbol{k}(\boldsymbol{v}, \boldsymbol{w})$.
B Let $\boldsymbol{k}=\boldsymbol{k}(\boldsymbol{v}, \boldsymbol{w})$. Then no set of fewer than \boldsymbol{k} vertices separates v and w.
B We proceed to show, by induction on \boldsymbol{k}, that if $\boldsymbol{k}(\boldsymbol{v}, \boldsymbol{w}) \geq \boldsymbol{k}$, then $\mu(\boldsymbol{v}, \boldsymbol{w}) \geq \boldsymbol{k}$.
is If $\boldsymbol{k}=\mathbf{1}$, then there is a \boldsymbol{v} - \boldsymbol{w} path.
B Assume thus that $\boldsymbol{k} \geq \mathbf{1}$ and that if $\boldsymbol{k}(v, w) \geq \boldsymbol{k}$ that $\mu(v, w) \geq \boldsymbol{k}$.
B Assume further that v and w are non-adjacent vertices in G with $k(v, w) \geq k+1$.
\& By the induction hypothesis, there are \boldsymbol{k} internally disjoint $\boldsymbol{v}-\boldsymbol{w}$ paths $\boldsymbol{P}_{\mathbf{1}}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{P}_{\boldsymbol{k}}$.

Menger's theorem

B Since the collection of vertices that follow v on these paths (there are \boldsymbol{k} of these) do not separate v and w, there is a $v-\boldsymbol{w}$ path \boldsymbol{P} whose initial edge is not on any $\boldsymbol{P}_{\boldsymbol{i}}$.
B Let \boldsymbol{x} be the first vertex after \boldsymbol{v} on \boldsymbol{P} that belongs to some $\boldsymbol{P}_{\boldsymbol{i}}$.
B Let $\boldsymbol{P}_{\boldsymbol{k + 1}}$ be the $\boldsymbol{v}-\boldsymbol{x}$ subpath of \boldsymbol{P}.
B Assume that $\boldsymbol{P}_{\mathbf{1}}, \boldsymbol{P}_{\mathbf{2}}, \ldots, \boldsymbol{P}_{\boldsymbol{k}+\boldsymbol{1}}$ have been chosen in such a way that the distance from x to w in $G-v$ is a minimum.
Bf If $\boldsymbol{x}=\boldsymbol{w}$, then we have the desired collection of $\boldsymbol{k}+\boldsymbol{1}$ internally disjoint paths.
B Assume therefore that $x \neq \boldsymbol{w}$.
B Again, by the induction hypothesis, there are \boldsymbol{k} internally disjoint v - \boldsymbol{w} paths $\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \ldots, \boldsymbol{Q}_{\boldsymbol{k}}$ in $\boldsymbol{G}-\boldsymbol{x}$.

M enger's theorem

$ß$ Assume that these paths have been chosen so that a minimum number of edges not on any of the paths P_{i} are used.
B Let \boldsymbol{H} be the graph consisting of the paths $\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \ldots, \boldsymbol{Q}_{\boldsymbol{k}}$ together with the vertex \boldsymbol{x}.
B Choose some $\boldsymbol{P}_{\boldsymbol{j}}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{k}+\boldsymbol{1}$, whose initial edge is not in \boldsymbol{H}.
B Let \boldsymbol{y} be the first vertex on $\boldsymbol{P}_{\boldsymbol{j}}$ after v which is in \boldsymbol{H}.
B If $\boldsymbol{y}=\boldsymbol{w}$, then we have the desired collection of $\boldsymbol{k}+\mathbf{1}$ internally disjoint $v-w$ paths.
B So assume $y \neq w$.
$ß$ If $y=x$, then let R be the shortest $x-w$ path in $G-v$.

M enger's theorem

B Let z be the first vertex on \boldsymbol{R} that is on some $\boldsymbol{Q}_{\boldsymbol{i}}$.
$ß$ Then the distance in $G-v$ from z to w is less than the distance from x to w.
B This contradicts our choice of $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{P}_{\boldsymbol{k + 1}}$. So $\boldsymbol{y} \neq \boldsymbol{x}$.
B If \boldsymbol{y} is on some $\boldsymbol{Q}_{\boldsymbol{i}}$ for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}$, then the $\boldsymbol{v}-\boldsymbol{y}$ subpath of $\boldsymbol{Q}_{\boldsymbol{t}}$ has an edge in \boldsymbol{B}.
B Otherwise, two paths from among $\boldsymbol{P}_{\mathbf{1}}, \boldsymbol{P}_{\mathbf{2}}, \ldots, \boldsymbol{P}_{\boldsymbol{k}+\boldsymbol{1}}$ intersect at a vertex other than v, w or x.
B If we replace the $v-y$ subpath of Q_{i} by the $v-y$ subpath of \boldsymbol{P}_{j}, we get a collection of \boldsymbol{k} internally disjoint v - \boldsymbol{w} paths in $\boldsymbol{G}-\boldsymbol{x}$ that uses fewer edges from \boldsymbol{B} than $\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \ldots, \boldsymbol{Q}_{\boldsymbol{k}}$ do, which is a contradiction.

Menger's theorem

Edge-connectivity

\mathcal{B} The maximum number of edge-disjoint v - w paths in G is denoted by $v(v, w)$. Since each such path must contain an edge from every $v-\boldsymbol{w}$ edge-separating set, $\boldsymbol{v}(\boldsymbol{v}, \boldsymbol{w}) \leq$ $\lambda(v, w)$.
is Theorem For any vertices v and w in a graph G, $\boldsymbol{v}(\boldsymbol{v}, \boldsymbol{w})=\lambda(\boldsymbol{v}, \boldsymbol{w})$.
B One may well ask whether there always exists a system of $v(v, w)$ edge-disjoint paths that contains a system of $\mu(v, w)$ internally disjoint $v-w$ paths.

Menger's theorem

For the graph \boldsymbol{G}, $\mu(v, w)=3$ and $v(v, w)=5$,
$ß$ but no set of three internally disjoint v-w paths is contained in a set of five edge-disjoint v - w paths.
ß To see this, note that every set of three internally disjoint v - w paths contains all five edges $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}$ of a minimal \boldsymbol{v} - \boldsymbol{w} edgeseparating set and thus cannot be extended to five edgedisjoint $v-w$ paths.
$ß$ If v and w are not adjacent, then both $\operatorname{deg} v$ and $\operatorname{deg} w$ may exceed $\boldsymbol{\kappa}(\boldsymbol{v}, \boldsymbol{w})$ by an arbitrarily large amount.

Menger's theorem

is Theorem: Every non-null graph has adjacent vertices v and \boldsymbol{w} for which $\mu(\boldsymbol{v}, \boldsymbol{w})=\min \{\operatorname{deg} \boldsymbol{v}, \operatorname{deg} \boldsymbol{w}\}$.
B An immediate consequence of the above theorem is that there exist vertices v and w such that

$$
\mu(\boldsymbol{v}, \boldsymbol{w})=\boldsymbol{v}(\boldsymbol{v}, \boldsymbol{w})=\lambda(\boldsymbol{v}, \boldsymbol{w})=\min \{\operatorname{deg} \boldsymbol{v}, \operatorname{deg} \boldsymbol{w}\} .
$$

$ß$ Note that this theorem is not true for multigraphs, since a multigraph formed from a cycle by doubling every edge does not satisfy the theorem.
B However, it is true that every multigraph M has adjacent vertices v and w for $w h i c h ~ v(v, w)=\min \{\operatorname{deg} v, \operatorname{deg} w\}$.

Menger's theorem

B The edge-connectivity $\lambda(G)$ of a non-trivial graph G is the smallest number of edges whose deletion produces a disconnected graph, while that of the trivial graph is defined to be 0 .
B It is not difficult to see that

$$
\lambda(\boldsymbol{G})=\min \{\lambda(\boldsymbol{v}, \boldsymbol{w}): v, \boldsymbol{w} \in \boldsymbol{V}(\boldsymbol{G})\} .
$$

A graph \mathbf{G} is \boldsymbol{l}-edge-connected if $\lambda(\boldsymbol{G}) \geq \boldsymbol{l}$.

Dilworth's theorem

Dilworth's theorem: In a finite partial order, the size of a maximum antichain is equal to the minimum number of chains needed to cover its elements.

Proof

B Let P be a finite partially ordered set.
B The theorem holds trivially if \boldsymbol{P} is empty. So, assume that \boldsymbol{P} has at least one element, and let \boldsymbol{a} be a maximal element of P.
B By induction, we assume that for some integer \boldsymbol{k} the partially ordered set $\boldsymbol{P}^{\prime}=\boldsymbol{P} \backslash\{\boldsymbol{a}\}$ can be covered by \boldsymbol{k} disjoint chains $C_{1}, \ldots, C_{\boldsymbol{k}}$ and has at least one antichain \boldsymbol{A}_{0} of size \boldsymbol{k}.

Dilworth's theorem

B Clearly, $A_{0} \cap C_{i} \neq 0$ for $i=1,2, \ldots, k$.
© For $\boldsymbol{i}=\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{k}$, let $\boldsymbol{x}_{\boldsymbol{i}}$ be the maximal element in C_{i} that belongs to an antichain of size \boldsymbol{k} in \boldsymbol{P}^{\prime}, and set

$$
A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} .
$$

B We claim that A is an antichain.
B Let $\boldsymbol{A}_{\boldsymbol{i}}$ be an antichain of size k that contains $\boldsymbol{x}_{\boldsymbol{i}}$.
B Fix arbitrary distinct indices \boldsymbol{i} and j. Then $\boldsymbol{A}_{\boldsymbol{i}} \cap \boldsymbol{C}_{\boldsymbol{j}} \neq \mathbf{0}$.
B Let $y \in A_{i} \cap C_{j}$. Then $y \leq x_{j}$, by the definition of x_{j}.
ß This implies that $x_{i} \not x_{j}$, since $x_{i} \nsupseteq y$. By interchanging the roles of i and j in this argument we also have $x_{j} \not \geq x_{i}$. This verifies that A is an antichain.

Dilworth's theorem

\& We now return to P. Suppose first that $a \geq x_{i}$ for some $i \in\{1,2, \ldots, k\}$.
B Let K be the chain $\{a\} \cup\left\{z \in C_{i}: z \leq x_{i}\right\}$.
Then by the choice of $\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{P} \backslash \boldsymbol{K}$ does not have an antichain of size \boldsymbol{k}.
Ⓢ Induction then implies that $\boldsymbol{P} \backslash \boldsymbol{K}$ can be covered by $\boldsymbol{k}-\mathbf{1}$ disjoint chains since $A \backslash\left\{x_{i}\right\}$ is an antichain of size $k-1$ in $P \backslash K$.
B Thus, \boldsymbol{P} can be covered by \boldsymbol{k} disjoint chains, as required.
B Next, if $a \neq x_{i}$ for each $i \in\{1,2, \ldots, k\}$, then $A \cup\{a\}$ is an antichain of size $\boldsymbol{k}+\mathbf{1}$ in \boldsymbol{P} (since a is maximal in \boldsymbol{P}).
B Now \boldsymbol{P} can be covered by the $\boldsymbol{k}+\mathbf{1}$ chains $\{\boldsymbol{a}\}$, $C_{1}, C_{2}, \ldots, C_{k}$, completing the proof.

