
Introduction to trees
Tree is a connected graph with no cycles.

 An undirected graph with no cycles is a forest.
 A forest consists of one or more components, each of

which is a tree.



Introduction to trees
 Three basic properties of trees are listed below.

1) For each pair of vertices and in a tree, there is
exactly one path from to that does not repeat any vertices
or edges.

2) Inserting an edge between any two vertices of a tree
produces a graph containing a cycle.

3) Removing any edge from a tree produces a
disconnected graph.
 Any tree with n vertices has n-1 edges.
 A weighted graph is a simple graph in which each edge has

a positive number attached to it. The number is called
weight of the edge.



Introduction to trees
Definitions
 Let be a weighted graph with vertices , , … , . The

weight matrix of is the n x n matrix for which the entry in
the -th row and -th column is given by the rule:

 = =
∞ ≠

 Let be a connected weighted graph, and let and be
vertices in .

 If is a path from and , then the length of is the sum of
the weights of the edges in .

 The distance from to is the smallest of the lengths of all the
paths from to .



Introduction to trees

 Sometimes, one vertex of the tree is distinguished, and
called the root; in this case, the tree is called rooted.

 The vertices adjacent to the root (the ‘first generation’) are
shown in a horizontal line below the root, the vertices that
can be reached from the root by a path of length 2 (the
‘second generation’) are shown in a line below the first
generation, and so on.

A vertex of degree 1 is called
a leaf.
An edge incident to a leaf is a
leaf edge.
A non-leaf vertex is an
internal vertex.



Introduction to trees
 Rooted trees are often treated as directed acyclic graphs

with the edges pointing away from the root.
 We refer to the vertex immediately above a given vertex as

the parent of the given vertex, while a vertex immediately
below a given vertex is a child of that vertex.

 Every vertex in a rooted tree except the root has exactly
one parent.

 A vertex with no children is called a leaf.
 Maximum length of chain from the root to its leaf is called

the height of the tree.
 The rooted tree which has the property that every vertex

that is not a leaf has exactly two children is called a binary
rooted tree.



Introduction to trees
 In a binary rooted tree, the two children of each parent are

identified as the left child and the right child, according to
where they are placed when the tree is drawn.

 For any given parent vertex, the left child is the root of the
left subtree, the binary rooted tree consisting of the left
child and its descendants. Similarly, the right child is the
root of the right subtree.

 A single vertex is a binary rooted tree.



Binomial heap

 Pyramidal tree is the tree of size with all elements,
except the root and leaves, with exactly two child elements.

 The root element always has the left son, except for the
degenerate case when the tree consists of a single element.

 For each element of the tree the rule is performed: "All the
elements of the left subtree of the current element are not
less than it."

Examples of pyramidal trees



Binomial heap
 Binomial heap is a data structure that contains a set of

pyramidal trees with pairs of various sizes.
 We can make a direct analogy between the size of

pyramidal trees in the binomial heap and the binary
representation of the number.

 If the binomial heap contains 11 elements, then it means
that it is composed of pyramidal trees with dimensions of
8, 2 and 1.

The search of minimal element
 The minimum element of the whole binomial heap must

be searched for among the roots of pyramidal trees
contained in this pile.

 Search of all the roots will be executed for (log( ))



Binomial heap
Combining the two pyramidal trees

 Two pyramidal trees A and B can be combined only if they have
the same size.

 Consider that the root of the tree A is less than the root of the
tree B.

 The root of the merged tree will be the root of the tree A, its
left subtree will be the right subtree of the root element of the
tree B, and the tree B itself will be the left subtree of the root
element of A. Time of the algorithm is ( ).



Binomial heap

Adding a new element
 This operation repeats the logic of a single increment.
 Let the original binomial heap consist of 11 elements.

1110 + 110 = 10112 + 00012 = 11002 = 1210.
1011

+ 0001
-------
1100

 The operation of adding two single bits is equivalent to the
operation of combining two pyramidal trees of the same
size.

 The complexity of this procedure is (log ).



Binomial heap
Combining the two binomial heaps

 Operation of combining two binomial heaps is similar to
the addition of a single element in the binomial heap.

 This is similar to the addition of two binary numbers.
 The complexity of this procedure is (log ).



Binomial heap
Removing the minimum element

 When you remove the minimum element of the heap, you
must first find a pyramidal tree, for which this element is a
root, and to exclude this tree from the general list of trees
of the binomial heap.

 After that it is necessary to divide the original tree into
log2(count) pyramidal trees (count - the number of
elements of the tree), which are subtrees of the original
tree.



Binomial heap

 These trees will have sizes equal to degrees of two, and also
will be pairwise distinct.

 These trees can be combined into a separate binomial heap T.
 After that it is necessary just to combine original binomial

heap with the heap T.
 This operation requires applying two sequential operations to

the asymptotic complexity of ( ), so the overall
complexity is also ( ).



Binomial heap
Changing the element

 Change of the element may impair the integrity of the
pyramidal tree.

 To restore the integrity it is necessary to apply the
operation of sifting up or down.

 Sifting down is carried down by the following rule: "If the
current element is less than the minimum of his sons, they
are swapped."



Binomial heap
 When sifting up we are searching for such parent element,

for which the updated element is in the left subtree, and if
the updated value is less than the parent, they are
swapped.

 This action repeated for the new position of the updated
element.

Sifting up in a pyramidal tree



Binomial heap
Deleting an element

 To remove an item, you must first make it the root node of
the pyramidal tree, in which it is located, and then remove
the root node from this tree.

 The easiest way to do it is to  set this element the value less
than the minimum element of the whole binomial heap.



Fibonacci heap
 Fibonacci heap is a set of Fibonacci trees.

 Fibonacci tree is a k-ary tree if for each item holds the rule
"child element does not exceed its parent.“

 Roots of Fibonacci trees are stored in an annular list.

Example of Fibonacci tree



Fibonacci heap
 All child elements that have a common ancestor, are stored

in an annular list, so the parent element does not need to
store a reference to all their descendants.

 It is enough to know the information about only one of
them.

 Each node of the Fibonacci tree, in addition to pointers to
left and right brothers, parents and one of his sons,
contains information about the number of child nodes.

 This information will be needed to delete the minimum
element in the process of sealing the heap.



Fibonacci heap
Search of the minimal element

 As in the case of a binomial heap minimum element of the
Fibonacci heap would be one of the root nodes of the
Fibonacci trees.

 Since the length of the annular list of root elements can be
sufficiently large, to achieve the desired asymptotics it is
easier to store a reference to the minimum of them.

 The complexity of this operation is ( ).



Fibonacci heap
Adding a new element

 The new element is always added to the root list of items.
 In this case, it is convenient to make it a left or a right brother of

the minimum element.
 It may happen that the new element is less than the minimum

element.
 In this case, you need to update the pointer to the minimal

element of the entire heap.

 The complexity of this operation is ( ).



Fibonacci heap
Combining the two Fibonacci heap

 To join the two Fibonacci heaps it is necessary to unite the
annular lists of their root elements.

 Pointer to a minimal element of the combined heap should
be chosen among the minimal elements of the original
heaps.

 This can be done in constant time.



Fibonacci heap
Combining the two Fibonacci trees

 You can combine any two Fibonacci trees, but to achieve a
logarithmic complexity of operations using the operation as
auxiliary, you should combine the two Fibonacci trees of
the same size.

 The minimum of the roots of the united trees will be the
root of the united tree.

 The second root will be the son of the minimum root.



Fibonacci heap
Removing the minimum element

 This operation is divided into several stages:
 If the deleted element has children, their annular list is

combined with an annular list of root elements.

 Removing the minimum element from the root list.
 The link to the minimal element of the heap will point to the

right sibling of the removed item, but not the fact that this
element is minimal.

Joining the element that is being removed to the root annular list of child elements.



Fibonacci heap
 Sealing the pile and finding the minimum element.
 Sequentially we iterate through all the Fibonacci trees,

starting with the tree containing the minimum element of
the entire heap.

 If at some stage there are two trees of the same size, they
need to be combined.

 For the merged tree again it is necessary to check whether
among the previously considered trees there is a tree with
the same size, and if there is - then repeat the operation.



Fibonacci heap
1. Begin viewing the trees from
the tree "6"

2. Tree "7-9-8" has a unique size
among the previously considered.

3. Tree size of "5" coincides with the
size of tree "6". They should be
combined.

4. Combining trees «6» and «5».
As a result, the minimum element
of the whole heap is updated.



Fibonacci heap
5. New tree "2" has a unique
size. The minimum element of
the entire heap is updated.

6. New tree "7" should be
combined with the tree "2".

7. The combined tree "2-7"
should be combined with the
tree "5-6."

8. All of the trees were considered.
Sealing the heap is over.

Complexity of the operation is O(logN).



Fibonacci heap
Changing the element

 If the value of the new element has increased it is necessary
to make sifting down, i.e., "If the current element is less than
the minimum of his sons, they are swapped."

 If the value of the element has decreased so much that it has
become less than its parent, it is necessary to remove the
element from the annular list of brothers, break the link with
its current father and put it in the root element of the annular
list.

Deleting an element
 The element is easier to remove by making it the minimum

element of the whole heap, and then to perform an operation
of removing the minimum element.


