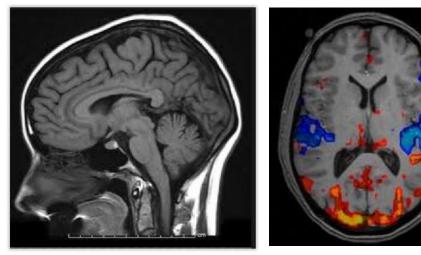
Data analysis in time-resolved non-invasive neuroimaging

Signal processing issues in electro- and magnetoencephalography

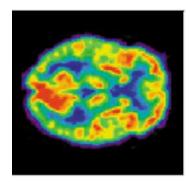
Alex Ossadtchi, Ph.D.,

professor of the DDAAI @ HSE, senior researcher of the Center for Cognition and Decision making @ HSE

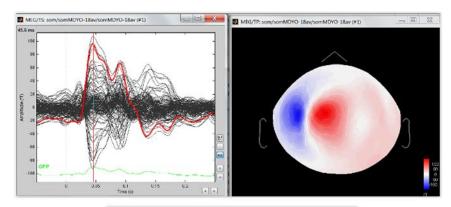
Technology behind the non-invasive neuroimaging

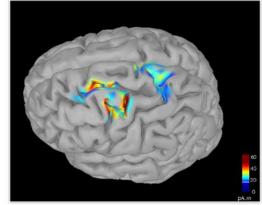


Structural&FunctionalMagnetic resonance tomography (MRI, fMRI)



Positron emission tomography (PET)

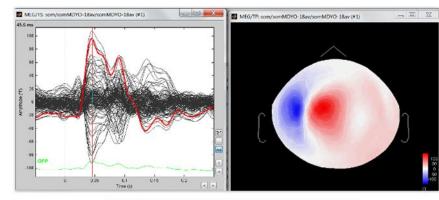


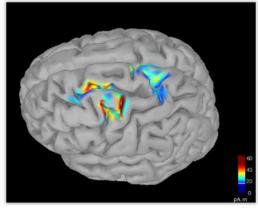


Electro and magnetoencephalography

Go EEG, MEG!

- Magnetic resonance tomography (functional & structural) (MRI, fMRI)
- Positron emission tomography (PET)
 - Hemodynamic and metabolic correlates -> low time resolution, not so high spatial resolution(functional)
- MagnetoEncephaloGraphy and ElectroEncephaloGraphy
 - Measures electrical acitivity -> high temporal resolution
 - Fantastic opportunity in mapping brain function and its fine temporal scale dynamics
 - Spatial accuracy heavily depends on the mathematical algorithms used for solving the inverse problem





Many uses

- Brain research labs around the world
 - Basic functions (e.g. perception, action, learning)
 - Complex functions (e.g. decision making, conformity, consciousness)
- Diagnostic
 - Epilepsy, ADHD, Depression, Parkinsonism, Schizophrenia, Stroke
 - Sports mild brain injury
 - Brain state monitoring (e.g. anesthesia)
- Rehabilitation and peak performance training
 - Brain-computer interface
 - Neurofeedback (patients, operators, classical music performers, sportsmen)
- Computer game industry

Class outline (topics to be covered)

- Neurophysiological basics of the origin of the MEG and EEG data
- Methods for solving the inverse problem
 - parametric and non-parametric Bayesian approaches
- EEG/MEG data mining for dynamic networks
 - Synchrony measures, estimators, standard and brand new techniques
- Brain-computer interfaces
 - Types and typical signal processing algorithms

Level 1	Level 2	Linear Systems Theory
Calculus Complex numbers Fourier transform Functional spaces Norms, scalar products Vector differential calculus Differential equation Partial differential equations Linear Algebra & analytical geometry Abstract vector spaces Notion of norm, cross-product 2-nd order curves and surfaces Probability Theory Vector random variables Scatter diagram Moments Gaussian r.v. Conditional r.v., Bayes rule, Chain rule Covariance matrix Statistics I(parametric) Descriptive stats Robust stats Param estimation, estimator properties Hypothesis testing, Parametric tests Non-parametric tests 	Operational calculus - Laplace transform - Solving differential eqs - Root analysis, stability Advanced topics in LA - SVD - PCA - Subspace correlation - Subspace correlation - Overdetermined/underdetermined systems of eqs - Min-norm principle Random processes - Stationarity - Autocorrelation function - Power spectral density - Narrow-band processes - Hilbert envelope, phase - Cross-spectum., coherence - Statistics II - Regression analysis - GLM - ANOVA - Post-hoc analysis - Multiple hypothesis testing - Multiple comparisons problem - Randomization tests - Family-wise error rate control - False discovery rate control	 Time invariance Impulse response Convolution Causality Level 3 Stability Discrete systems Z-transform Eigenfunctions of LTI Transfer function Digital signal processing Sampling theorem DFT, FFT Digital filters design Wavelet transform Coherence Estimation & Detection Theory ML estimation MAP estimation Sufficient statistics Kramer-Rao bound Matched filters Kalman filter Extended KF Monte-Carlo methods ROC analysis Optimization theory Linear programming Derivative free techniques Quadratic optimization Non-quadratic o., preconditioners

Formal Class Description

- Prerequisite courses
 - Linear algebra
 - Mathematical analysis
 - Probability theory and Statistics
 - Physics(101)
- Programming skills
 - Matlab
- Format
 - 8-10 1.5 hour sessions
 - 4-5 HW assignments (all involve Matlab programming)
- Equipment use
 - Opportunity to use EEG setup and explore your own brain activity with methods learnt

EEG/MEG measurement equation

m(t) - measurement vector at time instance t. Dimension of m(t) is equal to the number of sensors

L - forward matrix, whose i-th column is obtained by solving the forward problem for the given sensor configuration and for a single dipolar source located in the i-th voxel.

j(t) – UNKNOWN vector of activations of dipolar sources at time t

e(*t*) – vector of unaccounted random error (or noise)

$$Y(t) = Lj(t) + e(t)$$

$$Y = L X$$

- Regularization techniques are used. Most can be described within Bayesian maximum aposteriory probablity (MAP) framework.
- Allows to achieve a trade off between data and a priori knowledge about the properties of the solution
- Simplest min-norm regularization boils down to the following optimization problem

$$min[norm_{Q^{-1}}(j) + \lambda norm_{\Sigma_{\epsilon}^{-1}}(G j - m)]$$

Prior term, e.g. Desired solution properties expressed mathematically

data

prior

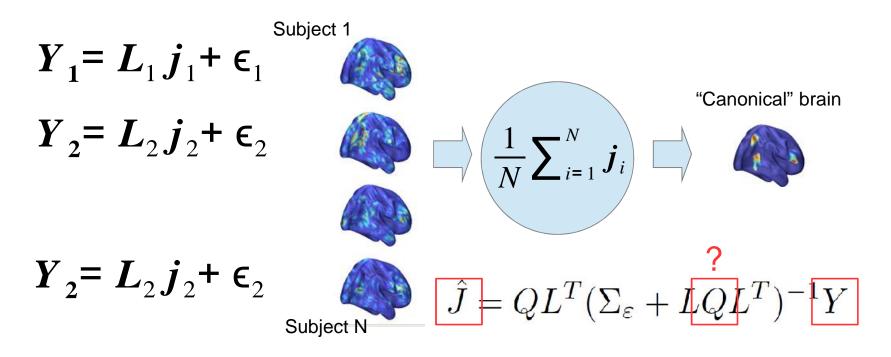
Data term. How much do we trust the data?

$$\lambda = 0 - ignore \ the \ data \ completely$$
, $\mathbf{j} = 0$

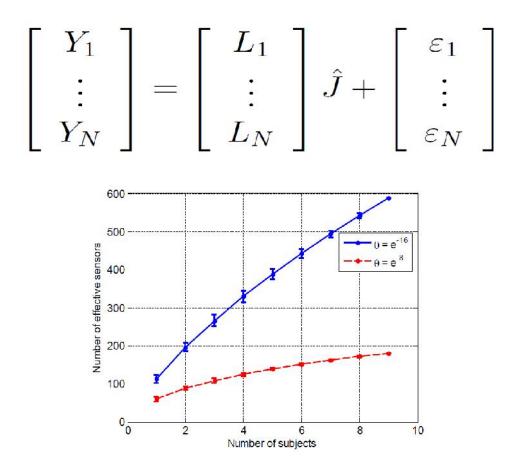
 $\lambda = \infty - fully$ trust the data, $N_{solutions} = \infty$

GALA: Group analysis leads to accuracy (with V. Kozunov)

 In a traditional setting individual inverse solutions are found and then warped onto the average or some canonical brain



Simultaneous algebraic inverse



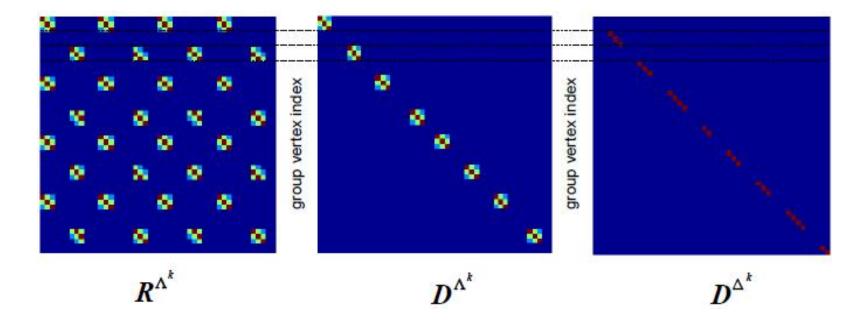
Want to be more flexible

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_N \end{bmatrix} = \begin{bmatrix} L_i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & L_N \end{bmatrix} \begin{bmatrix} J_1 \\ \vdots \\ J_N \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$

$$\boldsymbol{J}_1 \approx \boldsymbol{J}_2 \approx \dots \approx \boldsymbol{J}_N$$

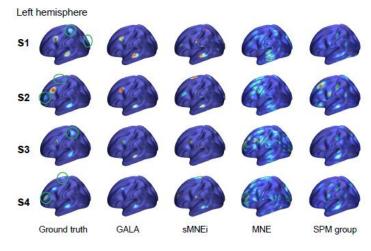
In a probabilistic sense

How to model dissimilar across subjects activity that IS present?

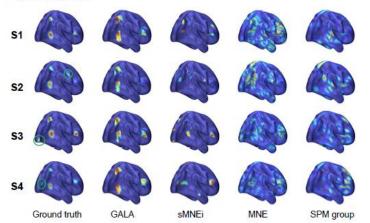


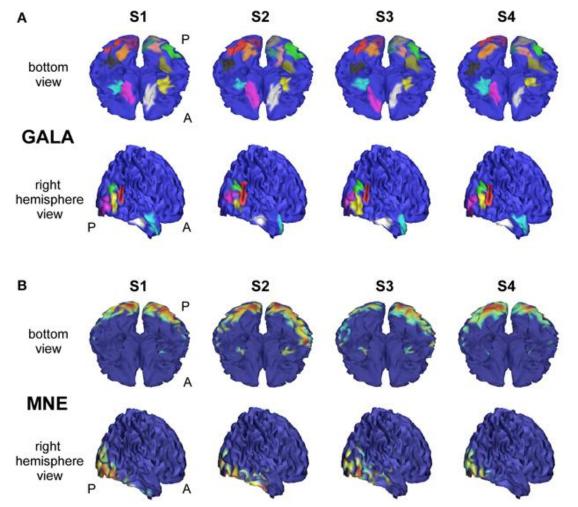
$$Q^{k} = h_{2}^{k} R^{\Lambda^{k}} + h_{3}^{k} D^{\Lambda^{k}} + \sum_{j=2}^{k} h_{2+j}^{k} D^{\Delta^{j}}$$

Simulation results Face vs scrambled face visual stimuli

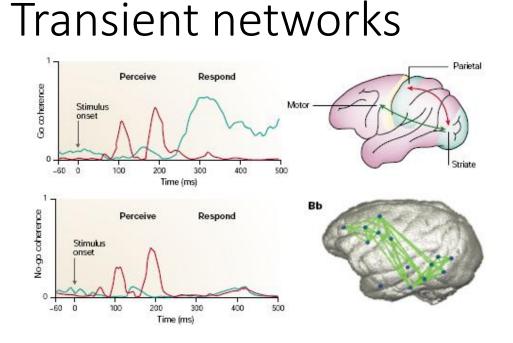


Right hemisphere





Power and shift independent imaging of coherent sources(PSIICOS) - a novel technique for detection of within frequency interactions

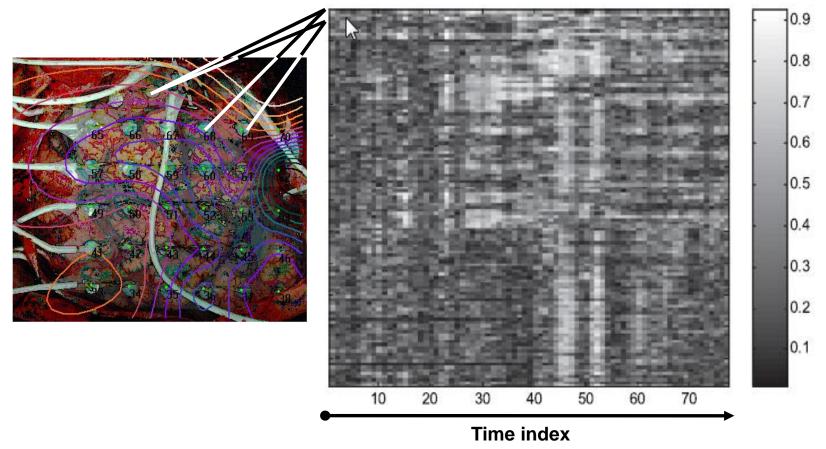


Go-no-Go task in a behaving cat waiting for a visual pattern to change

Varela et al., Brainweb, Nature Review Neuroscience, 2001,2,229-239

Network clusters seen in dynamics

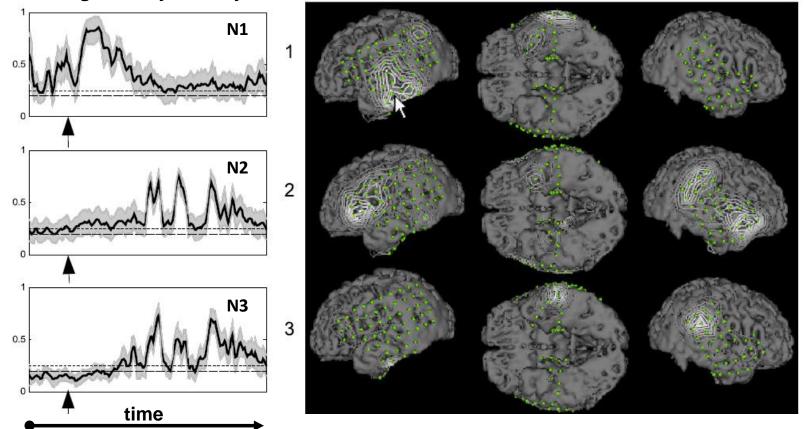
Pairwise degree of synchrony



A. Ossadtchi, R.E. Greenblatt, V.L. Towle, M.H. Kohrman, K. Kamada, Inferring Spatiotemporal Network Patterns from Intracranial EEG Data, *Clin, Neurophysiology*, 2010

Concurrently active networks at seizure onset in gamma band

Degree of synchrony



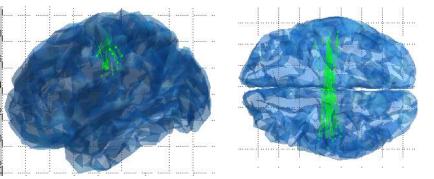
A. Ossadtchi, R.E. Greenblatt, V.L. Towle, M.H. Kohrman, K. Kamada, Inferring Spatiotemporal Network Patterns from Intracranial EEG Data, *Clin, Neurophysiology*, 2010

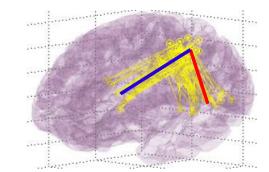
Experimental Setting

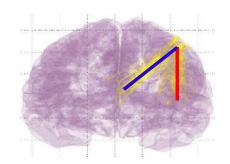
- Odd-ball, movement related words (randomized design)
 - Brosym, Brosym, ..., Brosai, Brosym, ..., Brosok
- 120 of odd balls of each type
- Neuromag Vectorview 306 sensor MEG machine

Transient networks from real MEG data

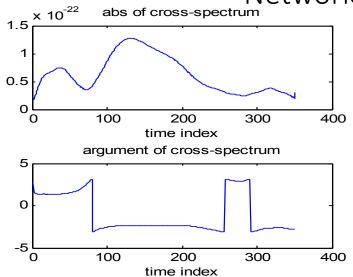
Spatial structure

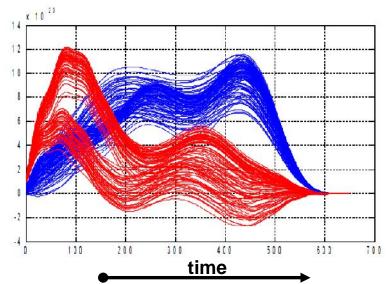




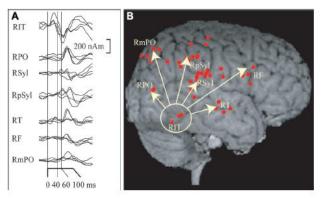


Network coupling strength over time





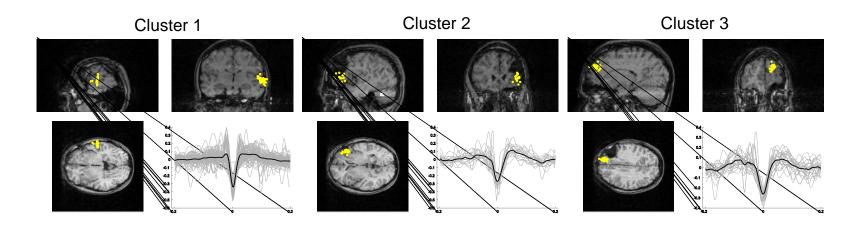
Propagation of spikes along epileptogenic network



Makela et al, Neurosurgery, 2006

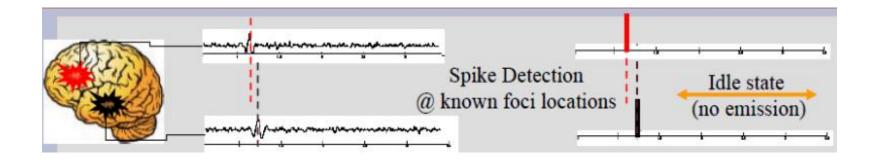
- Interictal spikes serve as a diagnostic marker for epilepsy (presence, location, type)
- When modeled with current dipoles tend show propagation effects and form spatial distal clusters
- Spike propagation analysis allows to discover the primary epileptogenic region

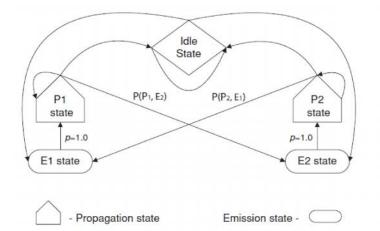
Automatic spike detection finds several regions that emit spikes



Which one is the primary region?

Markov model for epileptogenic network modeling

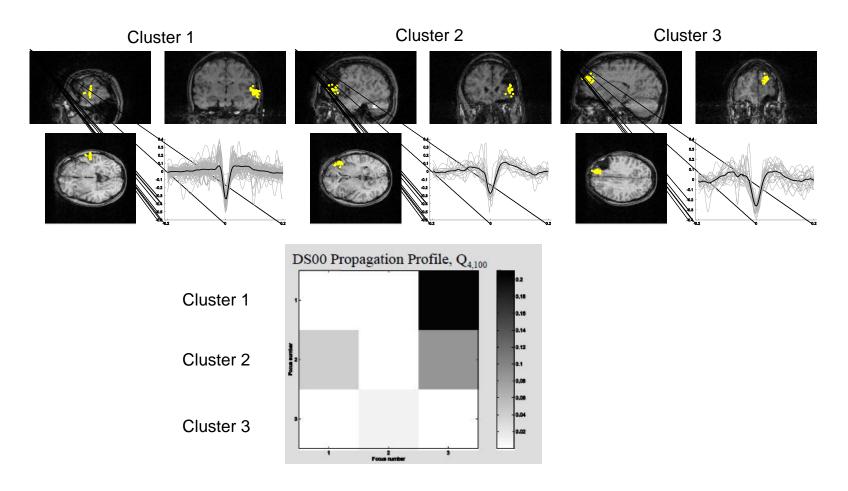




	$\boldsymbol{\mathcal{S}}(t+1)$					
$\boldsymbol{S}(t)$	I	<i>P</i> ₁	E_1	P_2	E ₂	
I	p(I I)	0	$p(E_1 I)$	0	$p(E_2 I)$	
P_1	$p(I P_1)$	$p(P_1 P_1)^*$	0	0	$p(E_2 P_1)^*$	
E_1	0	1	0	0	0	
P_2	$p(I P_2)$	0	$p(E_1 P_2)^*$	$p(P_2 P_2)^*$	0	
E_2	0	0	0	1	0	

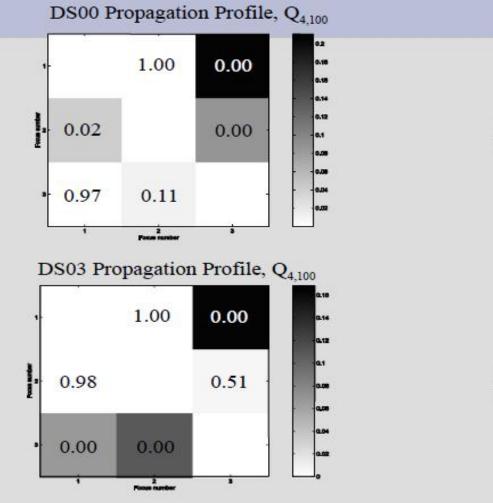
Figure 1. Simple two-cluster interaction Markov model. The number of foci is $N_f = 2$, the number of states is $N_s = 2N_f + 1 = 5$ and the number of allowed transitions is $N_t = 11$.

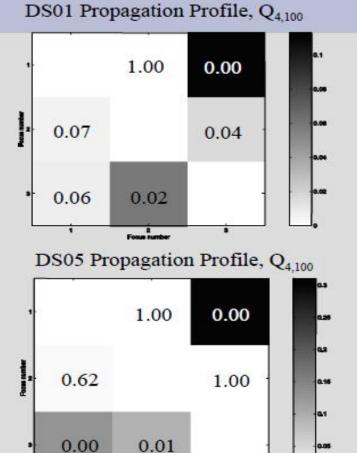
Case study



Ossadtchi et al, Physics in Medicine and Biology, 2005

Consistency and statistical significance of the results





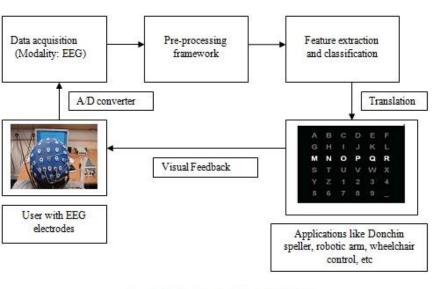
Pocue number

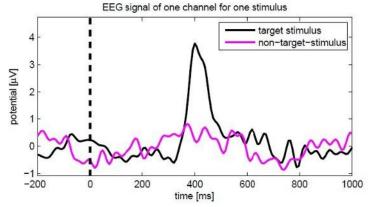
3

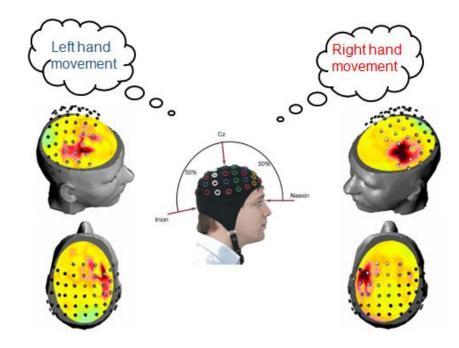
Brain-computer interfacing

P300-based speller

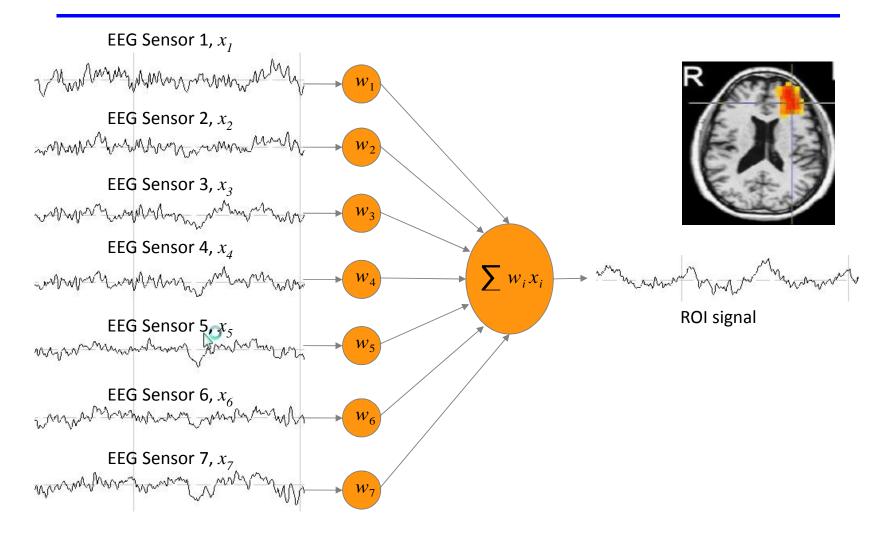
Motor imagery BCI



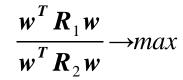


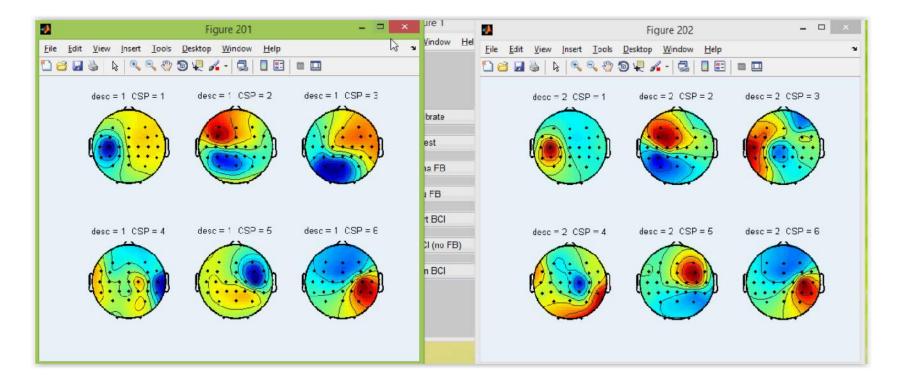


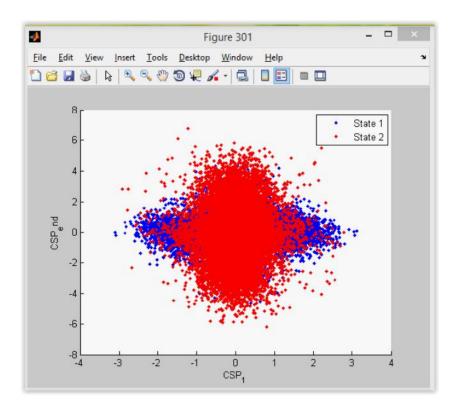
Сигнал активности ОИ как линейная комбинация сигналов сенсоров



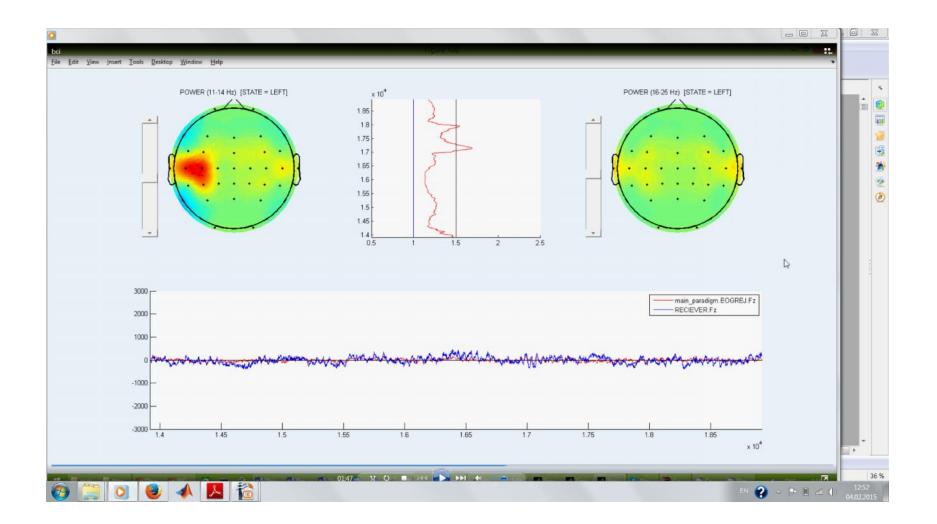
Настройка пространственных фильтров







$$\frac{\boldsymbol{w}^{T}\boldsymbol{R}_{1}\boldsymbol{w}}{\boldsymbol{w}^{T}\boldsymbol{R}_{2}\boldsymbol{w}} \rightarrow max$$



Welcome to

Data analysis in non-invasive Neuroimaging class!