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Propositions
 A proposition is a statement that is either true or false.

Whichever of these (true or false) is the case is called the
truth value of the proposition.

‘Canberra is the capital of Australia’
‘There are 8 day in a week.’

 The first and third of these propositions are true, and the
second and fourth are false.
 The following sentences are not propositions:

‘Where are you going?’
‘Come here.’
‘This sentence is false.’



Propositions
 Propositions are conventionally symbolized using the letters, , , … . Any of these may be used to symbolize specific

propositions, e.g.
: Manchester is in Scotland,
: Mammoths are extinct.

The previous propositions are simple propositions since they
make only a single statement.



Logical connectives and truth tables
 Simple propositions can be combined to form more

complicated propositions called compound propositions.
The devices which are used to link pairs of propositions are

called logical connectives and the truth value of any
compound proposition is completely determined by the
truth values of its component simple propositions, and the
particular connective, or connectives, used to link them.

‘If Brian and Angela are not both happy, then either
Brian is not happy or Angela is not happy.’

The sentence about Brian and Angela is an example of a
compound proposition. It is built up from the atomic
propositions ‘Brian is happy’ and ‘Angela is happy’ using the
words and, or, not and if-then. These words are known as
connectives.



Logical connectives and truth tables

Connective Symbol
And (conjunction) ⋀
Or (disjunction) ⋁
Xor (exclusive disjunction) ⨁
Not (negation) ¬ (−)
If-then (implication) →
If-and-only-if (equivalence) ↔ (≡)
the Sheffer stroke ↑ (|)
the Peirce arrow ↓ (⊥)



Logical connectives and truth tables
The truth table for conjunction

disjunction exclusive disjunction

⋀
T T T
T F F
F T F
F F F

⋁
T T T
T F T
F T T
F F F

p q p⊕q
T T F
T F T
F T T
F F F



Logical connectives and truth tables
The truth table for negation

implication equivalence

¬
T F
F T

p q p→q
T T T
T F F
F T T
F F T

p q p↔q
T T T
T F F
F T F
F F T



Logical connectives and truth tables
The truth table for Sheffer stroke

The truth table for Peirce arrow

↑
F F T
F T T
T F T
T T F

↑ = ∧
↓

F F T
F T F
T F F
T T F

↓ = ∨



Compound propositions

Example 1
Express the proposition ‘Either my program runs and it contains
no bugs, or my program contains bugs’ in symbolic form.
Solution:
Let denote the statement ‘My program runs’
Let denote the statement ‘My program contains bugs’
Then the proposition can be written in symbolic form as follows:( ¬ )
The structure of the expression ( ¬ )
can be depicted using an expression tree.



Compound propositions
The truth value of ( ¬ ) for each possible combination of
truth values of p and q can be found by constructing a truth table.
Example 2
Construct the truth table for the expression ( ¬ )
Solution ¬ ⋀ ¬ ( ⋀ ¬ )⋁

T T F F T
T F T T T
F T F F T
F F T F F



Compound propositions
A tautology is a compound proposition which is true no matter

what the truth values of its simple components.
A contradiction is a compound proposition which is false no

matter what the truth values of its simple components.
Example 3 Show that ( ∧ ) ∧ ( ∨ ) is a contradiction.
Solution

The last column shows that ( ∧ ) ∧ ( ∨ ) is always false, no
matter what the truth values of p and q.
Hence ( ∧ ) ∧ ( ∨ ) is a contradiction.

⋀ ∨ ⋀ ∧ ( ∨ )
T T F F F T F
T F T T F F F
F T F F T T F
F F T F T T F



Disjunctive normal form (DNF)
 In Boolean logic, a disjunctive normal form (DNF) is a

standardization (or normalization) of a logical formula which
is a disjunction of conjunctive clauses.?
T T T
T T F F
T F T F
T F F
F T T F
F T F F
F F T
F F F F

T

T

T

Here the input is T-F-F, therefore the normal
form is ∧ ¬ ∧ ¬ .

Here the input is F-F-T so the normal form is ¬ ∧ ¬ ∧
There are only three true outputs, therefore there will be
only three normal forms.

We join these with the disjunctive ‘or’ resulting in the ‘disjunctive normal
form’: ( ∧ ∧ ) ∨ ( ∧ ¬ ∧ ¬ ) ∨ (¬ ∧ ¬ ∧ )

We circle each of the output labeled ‘true’.
Considering the input (T-T-T) of the topmost circled T,
we create the following normal form:



Logical equivalence
Two expressions (composed of the same variables) are logically
equivalent is they have the same truth values for every
combination of the truth values of the variables.
Example 4 Show that ⋁ and ⋀ are logically equivalent,
i.e. that ∨ ≡ ∧ .
Solution

Comparing the columns for ⋁ and ⋀ we note that the
true values are the same. Each is true except in the case
where and are both true. Hence ⋁ and ⋀ are
logically equivalent propositions.

⋁ ∧ ⋀
T T F F F T F
T F F T T F T
F T T F T F T
F F T T T F T



Logical equivalence

There is distinction between the connective if-and-only-if and
the concept of logical equivalence.
When we write ⟷ , we are writing a single logical
expression. Logical equivalence, on the other hand, is a
relationship between two logical expressions. The two
concepts are related in the following way: two expressions

and are logically equivalent if and only if the expression⟷ is tautology.
 If ≡ then ↔ is tautology.
The converse is also the case, i.e. if ↔ is a tautology,

then ≡ .



Logical equivalence
Given the conditional proposition → , we define the
following:
 the converse of → : →
 the inverse of → : →
 the contrapositive of → : → .
The following truth table give values of the conditional
together with those for its converse, inverse and
contrapositive.



Logical equivalence
The truth table gives values of the conditional together with
those for its converse, inverse and contrapositive.

From the table we note the following useful result: a
conditional proposition → and its contrapositive → are
logically equivalent, i.e. → ≡ ( → ) .
Note that a conditional proposition is not logically equivalent

to either its converse or inverse. However, the converse and
inverse of a proposition are logically equivalent to each other.

→ → → →
T T T T T T
T F F T T F
F T T F F T
F F T T T T



Laws of logic

↔ ≡ ( → )⋀( → ) Equivalence law→ ≡ ¬ ∨ Implication law¬¬ ≡ Double negation law∧ ≡ ∨ ≡ Idempotent laws∧ ≡ ∧ ∨ ≡ ∨ Commutative laws∧ ∧ ≡ ∧ ( ∧ ) ( ∨ ) ∨ ≡ ∨ ( ∨ ) Associative laws∧ ∨ ≡ ∧ ∨ ( ∧ ) ∨ ∧ ≡ ∨ ∧ ( ∨ ) Distributive laws¬ ∧ ≡ ¬ ∨ ¬ ¬( ∨ ) ≡ ¬ ∧ ¬ de Morgan’s laws∧ ≡ ∨ ≡ Identity laws∧ ≡ ∨ ≡ Annihilation laws∧ ¬ ≡ ∨ ¬ ≡ Inverse laws∧ ( ∨ ) ≡ ∨ ( ∧ ) ≡ Absorption laws



Laws of logic

Example Use a truth table to verify the first de Morgan’s law:¬( ∧ ) ≡ ¬ ∨ ¬
Solution
Note that the law can be paraphrased as follows: ‘If it is not the
case that p and q are both true, then that is the same as saying
that at least one of or is false.’



Laws of logic
The truth table

The column for ¬( ∧ ) and ¬ ∨ ¬ are identical, and
therefore the two expressions are logically equivalent.

∧ ¬( ∧ ) ¬ ¬ ¬ ∨ ¬
T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T



Laws of logic
Example Use the laws of logic to simplify the expression:∨ ¬(¬ → )∨ ¬(¬ → ) ≡ ∨ ¬(¬¬ ∨ ) Implication law (with ¬ in place of p)∨ ¬( ∨ ) Double negation law∨ (¬ ∧ ¬ ) Second de Morgan law∨ ¬ ∧ ( ∨ ¬ ) Second distributive law (with ¬ and ¬

in place of and respectively )∧ ( ∨ ¬ ) Second inverse law( ∨ ¬ ) ∧ First communicative law (with T and( ∨ ¬ ) in place of and respectively )

∨ ¬ First identity law (with ( ∨ ¬ ) in place of
)



Laws of logic
Example Use the laws of logic to show that[( → ) ∧ ¬ ] → ¬ is a tautology.¬[(¬ ∨ ) ∧ ¬ ] ∨ ¬ Implication law (twice)¬[¬ ∧ ¬ ∨ ] ∨ ¬ First communicative law¬[ ¬ ∧ ¬ ∨ ¬ ∧ ] ∨ ¬ First distributive law¬[ ¬ ∧ ¬ ∨ ∧ ¬ ] ∨ ¬ First commutative law¬[(¬ ∧ ¬ ) ∨ ] ∨ ¬ First inverse law¬(¬ ∧ ¬ ) ∨ ¬ Second identity law(¬¬ ∨ ¬¬ ) ∨ ¬ First de Morgan law( ∨ ) ∨ ¬ Double negation law∨ ( ∨ ¬ ) Second associative law∨ Second inverse law

Second annihilation law



Predicate logic
A predicate is a statement containing one or more variables. If
values are assigned to all the variables in a predicate, the
resulting statement is a proposition.
For example, < is a predicate, where x is a variable
denoting any real number. If we substitute a real number for ,
we obtain a proposition; for example, ‘3 < 5’ and ‘6 < 5’ are
propositions with truth values T and F respectively.
The expressions ‘for all’ and ‘there exists’ are called

quantifiers. The process of applying a quantifier to a variable
is called quantifying the variable. A variable which has been
quantified is said to be bound.
For example, the variable in ‘There exists an such that

< 5’ is bound by the quantifier ‘there exists’. A variable that
appears in a predicate but is not bound is said to be free.



Predicate logic
A predicate can contain more than one variable;
a predicate with two variables, and for example, can

be written ( , ).
 In general, a predicate with variables, , , … , can be

written ( , , … ).
The quantifiers ‘for all’ and ‘there exists’ are denoted by the
symbols ∀ and ∃ respectively. With this notation, expressions
containing predicates and quantifiers can be written
symbolically.
The symbol ∀ is called the universal quantifier.
The symbol ∃ is called the existential quantifier.



Predicate logic

Example In the specification of a system for booking theatre
seats, ( , ) denotes the predicate ‘person p has booked
seat s’. Write the following sentences in symbolic form:
a) Seat has been booked.
b) Person has booked a (that is, at least one) seat.
c) All the seats are booked.
d) No seat is booked by more than one person.
Solution
a) ∃ ( , )
b) ∃ ,
c) ∀ ∃ ,
d) If no seat is booked by more than one person, then ( , )

and ( , ) cannot both be true unless p and q denote the
same person. In symbols: ∀ ∀ ∀ { , ∧ , →= }



Predicate logic
Applying not to a proposition is called negating the proposition.
 ¬[∀ ] ≡ ∃ [¬ ]
 ¬[∃ ] ≡ ∀ [¬ ]
Example Write down the negation of the following proposition:
‘For every number there is a number such that < ’.
Solution Write the negation in symbols and simplify it using the
laws of logic:

Write the answer as an English sentence:
‘There is a number such that, for every number , ≥ ’.

∀ ∃ ( < )] ≡ ∃ {¬ ∃ <∃ ∀ [¬ < ]∃ ∀ ( ≥ )


