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library('igraph')

TO SAVE YOUR TIME, PLEASE START DOWNLOADING THIS NETWORK RIGHT
NOW

Cohesive subgraphs

Graph cliques

Graph clique is a subset of vertices of a graph such that every two vertices in the clique are adjacent.

How many cliques can you see on this graph?

plot(graph.famous("bull"))
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There was a couple of definitions about the cliques in graph on the lecture.

A maximum clique is a clique that cannot be extended by including one more adjacent vertex (not included
in larger one). Can you name maximum cliques in the given graph?

A maximal clique is a clique of the largest possible size in a given graph.

And, finally, graph clique number is the size of the maximum clique. Bull graph’s clique number is 3.

maximal.cliques returns lists of vertices, that form a maximum graph. Let’s see maximum cliques for a
bull graph:

maximal.cliques(graph.famous("bull"))

## [[1]]
## [1] 4 2
##
## [[2]]
## [1] 5 3
##
## [[3]]
## [1] 1 2 3

Let’s demonstrate some useful functions for finding cliques. Our graph today is again Zachary’s Karate Club
graph:
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g = graph.famous("Zachary")
plot(g)
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We can define sizes of maximal cliques we interested in:

maximal.cliques(g, min = 4, max = 5) # maximal cliques of sizes 4 and 5

## [[1]]
## [1] 24 34 33 30
##
## [[2]]
## [1] 34 9 33 31
##
## [[3]]
## [1] 2 1 4 3 8
##
## [[4]]
## [1] 2 1 4 3 14

maximal.cliques returns lists of vertices - maximal cliques. clique.number returns graph’s clique number.

Let’s find and show maximal cliques for Zachary Carate Club graph: lrg = largest.cliques(g) returns
ids of nodes - largest cliques
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largest = largest.cliques(g)

op = par(mfrow = c(1,2))

labels = rep(0, vcount(g))

labels[largest[[1]]] = 2
plot(g, vertex.color = labels)
labels = rep(0, vcount(g))
labels[largest[[2]]] = 2
plot(g, vertex.color = labels)
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par(op)

k-core

k-core is a maximal subset of vertices such that each is connected to at least k others in the subset.
R has a function wich calculates the coreness for each vertex. The coreness of a vertex is k if it belongs to
the k-core but not to the (k+1)-core.

# Let's make some graph
z<-graph.empty(n=11, directed = FALSE)
z <- add.edges(z,c(1,2, 1,3, 1,4, 1,6, 1,5, 2,3, 2,4, 3,10, 3,11, 3,8, 3,4, 4,8, 4,7, 8,9, 10,11))
plot(z)
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Now we find maximum k-core and pick out it on graph

coreness <- graph.coreness(z)
max_cor <- max(coreness)
max_cor

## [1] 3

color_bar <- heat.colors(max_cor)
plot(z, vertex.color = color_bar[coreness])
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Network communities

Network communities are groups of vertices such that vertices inside the group connected with many more
edges than between groups.

Communitiy density Graph G(V ;E), n = |V |, m = |E| Community - set of nodes S ns - number of
nodes in S, ms - number of edges in S Graph density:

ρ = m

n(n− 1)/2

Community internal density:
δint(C) = ms

ns(ns − 1)/2
External edges density:

δext(C) = mext

nc(nc − 1)/2
Community (cluster):

δint > ρ, δext < ρ

Community cuts

Graph cut:
Q = cut = cs
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Ratio cut:
Q = cut

|S|
+ cut

|V §|
= ncs

ns(n− ns)
Normalized cut:

Q = cut

V ol(S) + cut

V ol(V §) = cs

2ms + cs
+ cs

2(m−ms) + cs

Conductance (quotient cut):
Q = cut

min(V ol(S), V ol(V §)) = cs

2ms + cs

Community modularity

Compare fraction of edges within the cluster to expected fraction in random graph with identical degree
sequence:

Q = 1
4(ms − E(ms))

Modularity score
Q = 1

2m
∑

ij

(
Aij −

kikj

2m

)
δ(ci, cj) =

∑
u

(euu − a2
u)

euu - fraction of edges within community u au =
∑

u euv fraction of ends of edges attached to nodes in u
The higher the modularity score - the better are communities. Modularity score range Q ∈ [−1/2, 1), single
community Q = 0.

Community detection

Community detection is an assignment of vertices to communities. Consider only sparse graphs m � n2

Each community should be connected. Combinatorial optimization problem: - optimization criterion (cut,
conductance, modularity) - optimization method Exact solution NP-hard. (bi-partition: n = n1 + n2, n! =
(n1!n2!) combinations) Solved by greedy, approximate algorithms or heuristics Recursive top-down 2-way
partition, multiway partition Balanced class partition vs communities

The list of community detection algorithms in igraph

• edge.betweenness.community [Newman and Girvan, 2004]
• fastgreedy.community [Clauset et al., 2004] (modularity optimization method)
• label.propagation.community [Raghavan et al., 2007]
• leading.eigenvector.community [Newman, 2006]
• multilevel.community [Blondel et al., 2008] (the Louvain method)
• optimal.community [Brandes et al., 2008]
• spinglass.community [Reichardt and Bornholdt, 2006]
• walktrap.community [Pons and Latapy, 2005]
• infomap.community [Rosvall and Bergstrom, 2008]

Newman-Girvan Edge-Betweenness

Edge betweenness Edge betweenness is equal to the number of shortest paths σst(e) from all vertices
to all others that pass through that edge e. CB(e) =

∑
s 6=t

sigmast(e)
sigmast
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g<-graph.empty(n=6, directed = FALSE)
g <- add.edges(g,c(1,2, 2,3, 1,3, 2,4, 4,5, 4,6, 5,6))
plot(g)
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betw <- edge.betweenness(g)
#E(g)
#betw

The algorithm The Newman-Girvan algorithm detects communities by progressively removing edges
from the original network. The Girvan-Newman algorithm focuses on edges that are most likely “between”
communities.

Algorithm:

• Step 1: the betweenness of all existing edges in the network is calculated first.

• Step 2: the edge with the highest betweenness is removed.

• Step 3: the betweenness of all edges affected by the removal is recalculated.

• Step 4: steps 2 and 3 are repeated until no edges remain.
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The best partition is selected based on modularity.

There is edge.betweenness.community function in R

g <- graph.famous("Zachary")
eb <- edge.betweenness.community(g)
plot(eb, g)
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## A bit more hand-made way
# color_map = c("grey","blue","black","yellow","red","green")
# membership = cutat(eb, no = 4)
# membership = eb$membership
# plot(g, vertex.color = eb$membership)

Also you can obtain dendrogram:

dendPlot(eb, mode="hclust", rect = 5)
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## Optionally you can run this
# dend <- as.dendrogram(eb)
# plot(dend)
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Spectral graph partitioning

Indicator vector si = ±1.

Integer optimization problem.

Normalized cuts:

Q = 1
4s

TLs, L = D −A

Modularity optimization:

Q = 1
4msTBs,Bij = Aij −

kikj

2m

Relaxation s→ x, s ∈ Zn, x ∈ Rn.

Quadratic optimization problem under constraints.

Solved by finding min/max eigenvalues and eigenvectors of L or B:

Lx = λDx; or Bx = λx;

Eigenvector rounds up to indicator vector s = sign(x).

Spectral modularity maximization

Algorithm: Spectral modularity maximization: two-way partition

Input: adjacency matrix A

Output: class indicator vector s

compute k = deg(A);

compute B = A− 1
2mkk

T

solve for maximal eigenvector Bx = λx;

set s = sign(xmax)
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Greedy Modularity maximization

Alternatively to the previous method, this one is agglomerative. Intially consider a network s.t. * There is no
edges * All clusters consist of a single vertex

Iteratively add an edge that delivers maximum modularity gain and merge correspondent communitues.

g <- graph.famous(name = "Zachary")
mm <- fastgreedy.community(g)

plot(rev(mm$modularity), xlab = 'Number of clusters', ylab = 'Modularity value')
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which.max(rev(mm$modularity))

## [1] 3
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plot(mm, g)
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Label propagation

Label propagation algorithm consists of four steps:

• Step 1: Initialize labels
• Step 2: Randomize node ordering
• Step 3: For every node replace its label with occurring with the highest frequency among neighbors
• Step 4: Repeat steps 2-3 until every node will have a label that the maximum number of its neighbors

have
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Warning! Due to step 2 you may get different results.

g <- graph.famous("Zachary")
lp <- label.propagation.community(g)
plot(lp, g)
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Wikipedia example

Load wikipedia network in R and run some community detection algorithm. Extract article names in some
communities and check whether they make sense?

g <- read.graph('wikipedia.gml', format = 'gml')
g <- as.undirected(g)

The next lines of code might be usefull for interpretation

mm <- fastgreedy.community(g)
l <- V(g)$label[mm$membership == 2]
text <- paste(l, collapse = ' ')

#install.packages(c("tm", "SnowballC", "wordcloud", "RColorBrewer", "XML"))
library(wordcloud)

## Loading required package: RColorBrewer

wordcloud(text, type="text",
lang="english", excludeWords = NULL,
textStemming = FALSE, colorPalette="Dark2",
max.words=200)
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## Loading required package: tm
## Loading required package: NLP
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Fast community unfolding

• Heuristic method for greedy modularity optimization
• Find partitions with high modularity
• Multi-level (multi-resolution) hierarchical scheme
• Scalable

Assign every node to its own community;

repeat

repeat

For every node evaluate modularity gain from removing node from

its community and placing it in the community of its neighbor;

Place node in the community maximizing modularity gain;

until no more improvement (local max of modularity);

Nodes from communities merged into “super nodes” ;

Weight on the links added up

until no more changes (max modularity);
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Walktrap community

Consider random walk on graph. At each time step walk moves to NN uniformly at random.

Distance between nodes rij(t) is computed as probability P t
ij to get from one to another in t steps.

Computations:

• exact, matrix multiplication

• approximate, random walk simulation

Vertex clustering (agglomerative algorithm).

Compute random walk distance between adjacent vertices;

for n-1 steps do

choose two “closest” communities and merge them ;

update distance between communities

end
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Overlapping communities
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