
Clustering on SN

Contents

Cohesive subgraphs . 1

Network communities . 6

Community cuts . 6

Community modularity . 7

Community detection . 7

library('igraph')

TO SAVE YOUR TIME, PLEASE START DOWNLOADING THIS NETWORK RIGHT
NOW

Cohesive subgraphs

Graph cliques

Graph clique is a subset of vertices of a graph such that every two vertices in the clique are adjacent.

How many cliques can you see on this graph?

plot(graph.famous("bull"))

1

https://www.cs.upc.edu/~csn/lab/wikipedia.gml

1
2

3

4

5

There was a couple of definitions about the cliques in graph on the lecture.

A maximum clique is a clique that cannot be extended by including one more adjacent vertex (not included
in larger one). Can you name maximum cliques in the given graph?

A maximal clique is a clique of the largest possible size in a given graph.

And, finally, graph clique number is the size of the maximum clique. Bull graph’s clique number is 3.

maximal.cliques returns lists of vertices, that form a maximum graph. Let’s see maximum cliques for a
bull graph:

maximal.cliques(graph.famous("bull"))

[[1]]
[1] 4 2
##
[[2]]
[1] 5 3
##
[[3]]
[1] 1 2 3

Let’s demonstrate some useful functions for finding cliques. Our graph today is again Zachary’s Karate Club
graph:

2

g = graph.famous("Zachary")
plot(g)

1

2
3

4
5

6

78

9

10

11

12
13

14
15

16

17

18

19

20

21

22

23

24

25
26

27

28
29

30
31

32

3334

We can define sizes of maximal cliques we interested in:

maximal.cliques(g, min = 4, max = 5) # maximal cliques of sizes 4 and 5

[[1]]
[1] 24 34 33 30
##
[[2]]
[1] 34 9 33 31
##
[[3]]
[1] 2 1 4 3 8
##
[[4]]
[1] 2 1 4 3 14

maximal.cliques returns lists of vertices - maximal cliques. clique.number returns graph’s clique number.

Let’s find and show maximal cliques for Zachary Carate Club graph: lrg = largest.cliques(g) returns
ids of nodes - largest cliques

3

largest = largest.cliques(g)

op = par(mfrow = c(1,2))

labels = rep(0, vcount(g))

labels[largest[[1]]] = 2
plot(g, vertex.color = labels)
labels = rep(0, vcount(g))
labels[largest[[2]]] = 2
plot(g, vertex.color = labels)

1
2

3

4

5

6
7

8

9
10

11 1213

14

15 16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

3334

1
23

4
5

6
7

8

9
10 11

12

13

1415
16

17

18

19

2021

2223

24
2526

27
28

29
30

31
32

33
34

par(op)

k-core

k-core is a maximal subset of vertices such that each is connected to at least k others in the subset.
R has a function wich calculates the coreness for each vertex. The coreness of a vertex is k if it belongs to
the k-core but not to the (k+1)-core.

Let's make some graph
z<-graph.empty(n=11, directed = FALSE)
z <- add.edges(z,c(1,2, 1,3, 1,4, 1,6, 1,5, 2,3, 2,4, 3,10, 3,11, 3,8, 3,4, 4,8, 4,7, 8,9, 10,11))
plot(z)

4

1
2

34

5

6

7

8

9

10

11

Now we find maximum k-core and pick out it on graph

coreness <- graph.coreness(z)
max_cor <- max(coreness)
max_cor

[1] 3

color_bar <- heat.colors(max_cor)
plot(z, vertex.color = color_bar[coreness])

5

1

2

3

4

5

6 7

8

9

10
11

Network communities

Network communities are groups of vertices such that vertices inside the group connected with many more
edges than between groups.

Communitiy density Graph G(V ;E), n = |V |, m = |E| Community - set of nodes S ns - number of
nodes in S, ms - number of edges in S Graph density:

ρ = m

n(n− 1)/2

Community internal density:
δint(C) = ms

ns(ns − 1)/2
External edges density:

δext(C) = mext

nc(nc − 1)/2
Community (cluster):

δint > ρ, δext < ρ

Community cuts

Graph cut:
Q = cut = cs

6

Ratio cut:
Q = cut

|S|
+ cut

|V §|
= ncs

ns(n− ns)
Normalized cut:

Q = cut

V ol(S) + cut

V ol(V §) = cs

2ms + cs
+ cs

2(m−ms) + cs

Conductance (quotient cut):
Q = cut

min(V ol(S), V ol(V §)) = cs

2ms + cs

Community modularity

Compare fraction of edges within the cluster to expected fraction in random graph with identical degree
sequence:

Q = 1
4(ms − E(ms))

Modularity score
Q = 1

2m
∑

ij

(
Aij −

kikj

2m

)
δ(ci, cj) =

∑
u

(euu − a2
u)

euu - fraction of edges within community u au =
∑

u euv fraction of ends of edges attached to nodes in u
The higher the modularity score - the better are communities. Modularity score range Q ∈ [−1/2, 1), single
community Q = 0.

Community detection

Community detection is an assignment of vertices to communities. Consider only sparse graphs m � n2

Each community should be connected. Combinatorial optimization problem: - optimization criterion (cut,
conductance, modularity) - optimization method Exact solution NP-hard. (bi-partition: n = n1 + n2, n! =
(n1!n2!) combinations) Solved by greedy, approximate algorithms or heuristics Recursive top-down 2-way
partition, multiway partition Balanced class partition vs communities

The list of community detection algorithms in igraph

• edge.betweenness.community [Newman and Girvan, 2004]
• fastgreedy.community [Clauset et al., 2004] (modularity optimization method)
• label.propagation.community [Raghavan et al., 2007]
• leading.eigenvector.community [Newman, 2006]
• multilevel.community [Blondel et al., 2008] (the Louvain method)
• optimal.community [Brandes et al., 2008]
• spinglass.community [Reichardt and Bornholdt, 2006]
• walktrap.community [Pons and Latapy, 2005]
• infomap.community [Rosvall and Bergstrom, 2008]

Newman-Girvan Edge-Betweenness

Edge betweenness Edge betweenness is equal to the number of shortest paths σst(e) from all vertices
to all others that pass through that edge e. CB(e) =

∑
s 6=t

sigmast(e)
sigmast

7

g<-graph.empty(n=6, directed = FALSE)
g <- add.edges(g,c(1,2, 2,3, 1,3, 2,4, 4,5, 4,6, 5,6))
plot(g)

1

2
3

4

5

6

betw <- edge.betweenness(g)
#E(g)
#betw

The algorithm The Newman-Girvan algorithm detects communities by progressively removing edges
from the original network. The Girvan-Newman algorithm focuses on edges that are most likely “between”
communities.

Algorithm:

• Step 1: the betweenness of all existing edges in the network is calculated first.

• Step 2: the edge with the highest betweenness is removed.

• Step 3: the betweenness of all edges affected by the removal is recalculated.

• Step 4: steps 2 and 3 are repeated until no edges remain.

8

The best partition is selected based on modularity.

There is edge.betweenness.community function in R

g <- graph.famous("Zachary")
eb <- edge.betweenness.community(g)
plot(eb, g)

9

http://www.inside-r.org/packages/cran/igraph/docs/edge.betweenness.community

12

3
4

5
6

7

8
9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24
25

26
27

2829

30

31

3233
34

A bit more hand-made way
color_map = c("grey","blue","black","yellow","red","green")
membership = cutat(eb, no = 4)
membership = eb$membership
plot(g, vertex.color = eb$membership)

Also you can obtain dendrogram:

dendPlot(eb, mode="hclust", rect = 5)

10

11 5 17 7 6 12 13 18 20 22 8 14 4 2 1 10 34 33 30 24 31 9 23 21 19 16 15 27 32 26 25 28 29 3

0
5

10
15

20
25

30

Optionally you can run this
dend <- as.dendrogram(eb)
plot(dend)

11

Spectral graph partitioning

Indicator vector si = ±1.

Integer optimization problem.

Normalized cuts:

Q = 1
4s

TLs, L = D −A

Modularity optimization:

Q = 1
4msTBs,Bij = Aij −

kikj

2m

Relaxation s→ x, s ∈ Zn, x ∈ Rn.

Quadratic optimization problem under constraints.

Solved by finding min/max eigenvalues and eigenvectors of L or B:

Lx = λDx; or Bx = λx;

Eigenvector rounds up to indicator vector s = sign(x).

Spectral modularity maximization

Algorithm: Spectral modularity maximization: two-way partition

Input: adjacency matrix A

Output: class indicator vector s

compute k = deg(A);

compute B = A− 1
2mkk

T

solve for maximal eigenvector Bx = λx;

set s = sign(xmax)

12

Greedy Modularity maximization

Alternatively to the previous method, this one is agglomerative. Intially consider a network s.t. * There is no
edges * All clusters consist of a single vertex

Iteratively add an edge that delivers maximum modularity gain and merge correspondent communitues.

g <- graph.famous(name = "Zachary")
mm <- fastgreedy.community(g)

plot(rev(mm$modularity), xlab = 'Number of clusters', ylab = 'Modularity value')

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

Number of clusters

M
od

ul
ar

ity
 v

al
ue

which.max(rev(mm$modularity))

[1] 3

13

plot(mm, g)

1

2

3 4 5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22
23

24

2526

27

28

2930

31

32

33
34

Label propagation

Label propagation algorithm consists of four steps:

• Step 1: Initialize labels
• Step 2: Randomize node ordering
• Step 3: For every node replace its label with occurring with the highest frequency among neighbors
• Step 4: Repeat steps 2-3 until every node will have a label that the maximum number of its neighbors

have

14

Warning! Due to step 2 you may get different results.

g <- graph.famous("Zachary")
lp <- label.propagation.community(g)
plot(lp, g)

15

1 2

3

4

5 6
7

8

9
10

11

12
13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28 29

30

3132

3334

Wikipedia example

Load wikipedia network in R and run some community detection algorithm. Extract article names in some
communities and check whether they make sense?

g <- read.graph('wikipedia.gml', format = 'gml')
g <- as.undirected(g)

The next lines of code might be usefull for interpretation

mm <- fastgreedy.community(g)
l <- V(g)$label[mm$membership == 2]
text <- paste(l, collapse = ' ')

#install.packages(c("tm", "SnowballC", "wordcloud", "RColorBrewer", "XML"))
library(wordcloud)

Loading required package: RColorBrewer

wordcloud(text, type="text",
lang="english", excludeWords = NULL,
textStemming = FALSE, colorPalette="Dark2",
max.words=200)

16

Loading required package: tm
Loading required package: NLP

digital
processing

siemens

link

standardtelephony

al
go

rit
hm point

loop

list

automaticshutter

codec

standards

effect

broadcast

path

telecommunication

virtual

information

computer
authentication
coding

circuit

communications

email

gateway

group

frame

subscriber

au
di

o

routing

theory

bit

ieee

provider
transmission

cryptosystem

w
eb

networks
switch

element

address

interface

windows

liquid

the

association

fo
rm

at

technology ca
bl

e

transfer

antenna systems
attack

dialing

cryptanalysis

array
control
differential

carrier
cryptographic

mail
ch

ar
ac

te
r

amateur

internet

telephone

license

block

receiver

camera

exchange

personal

co
de

signature

un
iv

er
sa

l

power

numbers

video

loss

system

radar
channel

service

switching

networking

proxy

lo
ca

l

random

file

re
la

y

company card

delay

generation

mobile

keying

encryption

public

remote

access

broadband

science

data

security

fr
eq

ue
nc

y

router

tone

ap
pl

ic
at

io
n

identifier

advanced

services

center

encoding

secure

signal

software

multicast

di
sp

la
y

distributed

field

national

ericsson

communication

scheme

bus

model

plan

area

storage

mode

program

stream

phone

terminal

independent

film

codes

optical

wide

language

common

tim
e

open

high

fiber

user

online

certificate
logic

modem

cisco

voice

unit

game

fr
ee

layer

noise

box

Fast community unfolding

• Heuristic method for greedy modularity optimization
• Find partitions with high modularity
• Multi-level (multi-resolution) hierarchical scheme
• Scalable

Assign every node to its own community;

repeat

repeat

For every node evaluate modularity gain from removing node from

its community and placing it in the community of its neighbor;

Place node in the community maximizing modularity gain;

until no more improvement (local max of modularity);

Nodes from communities merged into “super nodes” ;

Weight on the links added up

until no more changes (max modularity);

17

Walktrap community

Consider random walk on graph. At each time step walk moves to NN uniformly at random.

Distance between nodes rij(t) is computed as probability P t
ij to get from one to another in t steps.

Computations:

• exact, matrix multiplication

• approximate, random walk simulation

Vertex clustering (agglomerative algorithm).

Compute random walk distance between adjacent vertices;

for n-1 steps do

choose two “closest” communities and merge them ;

update distance between communities

end

18

Overlapping communities

19

	Cohesive subgraphs
	Network communities
	Community cuts
	Community modularity
	Community detection

