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IDENTITIES IN TWO-VALUED CALCULI
BY R. C. LYNDON

Introduction.
Classical two-valued logic is ordinarily treated as a deductive
system, with certain propositions (or prepositional functions)
given as axioms, from which all true propositions are
derivable by substitution and modus ponens.
Essentially the same calculus may be treated as an algebraic
system (Boolean algebra), in which the axioms are now
certain equations (or identities), from which all true
equations are derivable by substitution and the usual rules for
equality.
Let , … , be any set of Boolean functions; then the
algebraic theory having , … , as primitive operations
possesses a finite complete set of axioms.



Preliminaries
Preliminaries.
 In view of the elementary nature of our proofs, we permit

ourselves a certain informality of expression.
By an algebra, , we mean a certain set of elements, ,

together with a set of primitive functions (of various
numbers of arguments) defined for all sets of arguments from

and assuming values in .
Any function compounded out of the primitive functions in the

usual sense will be said to belong to, and two such functions
will be called equal if their values agree for all sets of
arguments.
 It will be convenient further to identify a "reducible" function,

that does not effectively depend upon certain of its arguments,
with the corresponding function of the remaining arguments.



Preliminaries
Thus, in Boolean algebra, the reducible function ( ) = ∨ of

a single argument will be identified with the constant function 1.
A complete set of axioms for is a set of (true) equations, … , = ,… , , … ,, … , = ,… , , … ,
where the are indeterminates and the and functions
belonging to , from which all identically true equations of the
same form are derivable by means of the following rules:

(I) reflexivity and symmetry of equality;
(II) uniform substitution for a variable in any established
equation;
(III) given = , substitution of for at any occurrence
in an established equation.



Preliminaries
An algebra is axiomatizable if it possesses a finite complete

set of axioms.
Two algebras and will be called equivalent if they

possess the same elements and the same functions.
The primitives of one must then be definable in terms of

those of the other, whence we have the following theorem.
Theorem 1. If and are equivalent, then is axiomatizable
if and only if ′ is.
For the present purpose it is thus not necessary to distinguish
between equivalent algebras.
Thus we avoid certain trivial complications. In particular, every
algebra is equivalent to an algebra none of whose primitives is
a reducible function, nor the identity function ( ) = .



Connection with deductive systems
Connection with deductive systems

 In an algebra , let a certain element 1 be "designated" as
"true," and let a certain function of two arguments be called
the "conditional" and written multiplicatively as .
Under certain restrictions, , as a "logical matrix," will define

a logical calculus ( ), with the rule of inference:
If and are theorems, then is a theorem.



Connection with deductive systems
Theorem 2. Suppose that ( ), as a deductive system, has a
complete set of axioms : , … , .
Suppose further that in the conditional function and the
single designated element satisfy the following identities:= (1)= (2)= ,    (3)
where and represent arbitrary elements of .
Then , as an algebraic system, possesses a complete set of
axioms consisting of (I), (2), and (3) together with the
equations = ,… , = .



Connection with deductive systems
Proof.
Clearly the equations listed are true in .
 If is an axiom of , then = among the axioms listed for

.
 If is a theorem of , and = has been derived from the

axioms for by the rules I, II, and III, then = follows in
for any obtained from by uniform substitution.

Suppose and are theorems of , and that = and= have been derived from the axioms for .
Then substitution (in accordance with III) gives = ,

whence from (2) it follows that = is derivable from the
axioms for . This proves, recursively, that if is a theorem
of , then = follows from the axioms for .



Connection with deductive systems
Suppose now that = is true in . By (1) it follows that= and = are true equations, whence

and must be theorems of .
Therefore = and = are derivable from the

axioms for .
But (3) gives ( ) = ( ) , whence by substitution =

, and applying (2) now gives = .
Thus = is derivable from the axioms for .



Connection with deductive systems
Remark.
That the three equations (1), (2), (3) in cannot be replaced
by the six corresponding conditionals in ( ) is shown by the
three-valued calculus with defined by the accompanying
table; for in this calculus the six conditionals hold while
equation (2) fails.

1 2 3

1 1 3 3

2 1 1 1

3 1 1 1



Connection with deductive systems
Note that the class of "designated" elements and the

selected "conditional" function play no special role in as
an algebra.
Thus the correspondence between logic and algebra is not

unique in either sense.
This ambiguity may be exploited to deduce, from Rosser and

Turquette's deductive axiomatization of the Lukasiewicz-
Tarski -valued calculi (with an arbitrary number of
designated values), the following result:



Connection with deductive systems
Corollary 2.1.
The algebra defined by the matrix for each of the Lukasiewicz-
Tarski -valued logics is axiomatizable.
Henkin has shown that every two-valued logic containing the
classical conditional function is deductively axiomatizable.
By Theorem 2 we conclude:
Corollary 2.2.
Every two-element algebra containing the classical conditional
function is (algebraically) axiomatizable.


