
Post's iterative systems
An algebra containing just two elements, which we shall

designate as 0 and 1, constitutes what Post has called a
twovalued iterative system.
Post has enumerated all such algebras, and we repeat below

what is essentially his enumeration.
However, in accordance with Theorem 1, we list only one out of

each set of equivalent algebras.
Also, we omit those systems with only constant functions, which

are vacuously axiomatizable.
Finally, we define the dual of a function to be the function

obtained from under the interchange of the two elements 0
and 1 of .
The dual of an algebra is the algebra whose functions are

precisely the duals of those of . Since an algebra is isomorphic
to its dual, we include in our list only one out of each pair of
duals.



Post's iterative systems
A two-valued algebra is fully described by listing a set of primitive
functions. For this purpose we employ the following notation :

0 and 1 for the two (dual) constant functions;
for the self-dual function of complementation (or negation) ;∨ for the union (maximum) function, and ∧ , or simply

, for the dual intersection (minimum) function;≡ (equivalence) and its dual + (symmetric difference);⊃ (conditional) and its dual — (set difference: );+ + , self-dual;, , = ∨ , , , = ( ≡ ), and, for each ≥ ,, … , = … ∨ … ∨⋯∨ … ;
we shall not require a notation for the duals of these functions.



Post's iterative systems
In listing the two-element algebras, we first give the name of the
algebra (a capital letter with subscript) in Post's classification;
next, a set ( , … ) of primitive functions; and thirdly (in certain
cases) a fuller equivalent set of primitive functions.
For future convenience, we divide our list into five sections.
Ia. = , = ( , );∨ , = ∨, , = ∨, , = (∨, , ) ;= ∨,∧ , = ∨,∧, , (∨,∧, , ) ;= + = +, , = +, = (+, , , ) ;= −,∨ = +,∧, , = −, = (+,∧, , ) .
Ib. = + + , = ( + + , ).
II. = ⊃ , and = (⊃, ) for each ≥ .



Post's iterative systems
III. = , , = , , , ;= , , , = ( , , , , ) ;= , , = ( , , , , , , ) ;= , , , ∨ = ( , , , , , , , ∨ ) ;= , , , = ( , , , , ) for each ≥ ;= , , , , = ( , , , , , ) for each ≥ ;

(Note that, for > , = = , . )= ( , , , = ( , , , , , , , ) for each ≥ .

IV. = , = , + + , = ( , + + , ).



Systems I
For each of the systems la a complete set of axioms can be

chosen by inspection from the various familiar sets of
axioms for Boolean algebras and Boolean rings.
Completeness can be proved by showing that the chosen set

of axioms serves to reduce every expression to a prescribed
normal form, and that distinct normal forms represent
distinct functions.
The same method applies to systems lb.



Systems I
For example, if we temporarily abbreviate + + to ,
system has the following set of axioms:= , = , = ,= , = , ( ) = ( ) .
Completeness is established by reference to the normal forms, , ( ( … … )), ( … … ),
where , , … , , , are distinct variables in alphabetical
order.



Systems II
The axiomatizability of these systems, which all contain the

conditional, follows from Corollary 2.2.
Alternatively, for the dual systems, which contain — and

, a proof paralleling that for systems III can be given, in
terms of representations by maximal dual ideals.



Systems III
Observe that all of the systems III contain the connectives ( , , )
and .
Theorem 3. Let the algebra with primitive connectives ( , , )
and satisfy the axioms= , = , = , , , = ,, , = , , , = , , , , , = , , ,( , , ) = ( , , ), and ( , , ) = ( , , ).
Then there exists a one-to-one mapping ∶ → , of into an
algebra of sets, such that( , , ) = ∨ and ( ) = .
To prove this theorem, we first define ⊂ to mean = .



Systems III
It then follows that ⊂ ; that ⊂ and ⊂ imply = ;
and that ⊂ and ⊂ imply ⊂ .

An ideal in is defined to be any subset ≠ satisfying
(1) if ⊂ and is in , then is in ,
(2) if and are in , then is in .
An atom  in is an ideal with the further property
(3) if ( , , ) is in , then either or is in .



Systems III
Lemma. If ⊂ does not hold, then there exists an atom
containing but not .
To prove the lemma, we first observe that the set of all

such that ⊂ is an ideal containing but not .
We shall show that every ideal with this property, if it is not

already an atom, can be extended to a larger ideal with the
same property.
Since the union of an ascending chain of ideals with this

property is clearly an ideal with the same property, it will
follow by Zorn's lemma that there exists a maximal ideal
with this property, which must therefore be an atom
containing but not .



Systems III
Let be an ¡deal, but not an atom, containing but not .
Then by definition contains some ( , , ) while
neither nor is in .
Suppose there existed and in such that ⊂ and⊂ .
It would follow that ⊂ and ⊂ , where =
was in . Hence( , , ) = ( , , ) = ( , , ) =( , , ) = ( , , ) = ( , , ),
that is, ( , , ) ⊂ .



Systems III
Then, since and ( , , ) were in it would follow that( , , ) was in , and, since ( , , ) ⊂ , that was

in , contrary to hypothesis.
Thus we may suppose, by symmetry, that ⊂ holds for
no in .
The set of all such that ⊂ is clearly an ideal
properly containing , and hence , but not .
This completes the proof of the lemma.



Systems III
Define to be the set of all atoms that contain .
From (1) it follows that ⊂ implies ⊂ .
The lemma shows that if not ⊂ , then not ⊂ . Since the

mapping → preserves inclusion, it is one-to-one.
That ( ) = follows from (1) and (2), if one notes that⊂ and ⊂ .
It remains to show that ( , , ) = ( ∨ ) .
First, let ( , , ) be in , an atom. Then( , , ) = ( , , )( , , ) = (( , , ) , , ) = (( , , ), ,
whence by (3) either ( , , ) = ( , , ) = ( , , )
is in , or else ( , , ) = is in , and in either case is in( ) ∨ ( ) = ∨ = ( ∨ ).



Systems III
Conversely, if is in ( ∨ ) we may suppose, by

symmetry, that is in = ( );
then , , = , , = implies that⊂ ( , , ), so that in implies that ( , , ) is in ,
that is, that is in( , , ) .
This completes the proof of the theorem.



Systems III
Theorem 4. The axioms form complete set for the algebra .
Proof.
Let be the free denumerably generated algebra with primitives

and ( , , ) subject to axioms , and let be the isomorphic
algebra of sets.
Every identity of the two-element algebra holds also in , as a
subalgebra of a direct product of replicas of . Thus every
identity of holds in the free algebra , and so is a consequence
of the axioms .



Systems III
Theorem 5. Each of the algebras , , , , and is
axiomatizable.
Proof. Each of these algebras can be obtained by adjoining
further primitives to .
To extend the result obtained for it must be shown in each
case that adjoining a finite number of new axioms to the set

will ensure that the new primitives are properly represented
in .
For the algebra , with the additional primitive 0, it suffices

to adjoin the single additional axiom 7: = .
That is indeed the empty set in follows from the fact that 0
in , for an atom , would imply by (1) that all were in ,
contrary to the requirement ≠ .



Systems III

For , with additional primitive , , , we adjoin the
additional axioms :, , = , , , , , = , , ,, , = ,( , ( , , ), [ , , ]) = .
Suppose is in [ , , ];  then [ , , ] in and [ , , ] ⊂

implies is in .
 If neither nor is in , then is in ( ≡ ) as required.
Otherwise we may suppose that y is in , whence , , =

is in , so also is in , and again is in ( ≡ ) .
For the converse, suppose that is in ( ≡ ).
 If is in( ) , it follows from , , = ( ) =

that ⊂ [ , , ] and so [ , , ] is in as required.



Systems III
Otherwise is in but neither nor is in.
By (3), that = ( , ( , , ), [ , , ]) is in implies that either( , , ) = ( , , ) or [ , , ] = [ , , ] is in .
Since, by (3), ( , , ) in would imply that either or were

in , it must be that [ , , ] is in .
For , with additional primitive ∨ , adjoin the further

axioms :∨ = ∨ , ∨ = , ∨ , , = ∨ .
If ∨ = ( ∨ , , ) is in , it follows by (3) that either∨ = or ( ∨ ) = is in , so is in ∨ .
Conversely, if either or is in , it follows from ⊂ ∨

and ⊂ ∨ that ∨ is in .
, for ≥ , contains the additional primitive .



Systems III
Abbreviate( , , … , ) = ( , ( , … ( , ( , , ), ), … , ), )
and write for … … , and for( … , ).
Adjoin the following finite set of further axioms:

: axioms expressing that ( , … , ) is invariant under any
permutation of its arguments;: , … , = ( , … , , , … , ),: , … , = .
From with it follows that is in whenever any is in

.



Systems III
For the converse, suppose that is in .
Since = ( , , … , ), by (3) either( , , … , ) = ( , , … , ) is in or else =

is in .
 If is in , then is in ∨⋯∨ as required.
Otherwise from ( , , … , ) in we conclude by (3) again
that either ( , , … , ) or is in .
Continuing thus, either some one of , … , is in , or else( , , ) is in , whence either = or = is in .
In any case, is in ∨⋯∨ as required.
Finally, for it evidently suffices to adjoin the axiom to
those for ; and for to adjoin the axioms to those for .



Systems IV
Theorem 6. The algebra is axiomatizable.

is defined by the single primitive ( , , ) = ∨ ∨ .
 Let be the free algebra on a denumerable set of generators, , , … subject to the same set of identities as . Fixing the

generator , introduce the definitions
(Δ) ∧ = , , , , , = ∧ ( , , ),= .
Let a be the algebra with the same elements as , but with

primitive operations, , , ∧ , , , , and .



Systems IV
Let be the free algebra of type , with primitives( , , ), ∧ , ( , , ), and 0, on the generators , , …
Then the mapping → ∧ of the underlying Boolean
algebras clearly establishes an isomorphism of onto .
Let be a finite set of axioms for , and so for .
Let be the corresponding axioms for the isomorphic

algebra .
Using (Δ) to eliminate defined operations, we obtain from

a set of equations expressed in the variables, , , … and the primitive , of the algebra .



Systems IV
 If is any expression of , substituting for yields an

expression in the notation of .
 If is the expression of corresponding to under the

isomorphism of onto , we see that formally is
obtained by substituting 0 for in .

 In the full notation of Boolean algebra, let be the dual of
; since is self-dual, we see that is equivalent to the

formal result of substituting 1 for in , whence we have
the identity = ∨



Systems IV
 Now suppose = is one of the equations of . This

means that = was one of the axioms of ,
whence = and its dual = , are Boolean
identities. From (H) it follows that = p is a Boolean
identity. This shows that all the equations are true in .

 For the converse, let = be any true equation in the
notation of . Then, setting = , the equation =
is true in A0, and hence a consequence of the axioms for

.



Systems IV
 Then = is a consequence of the axioms in the

isomorphic algebra . Eliminating the defined
operations by (Δ) , it follows that = p is a
consequence of the axioms for .

 This completes the proof that is axiomatizable. An
obvious modification of this argument establishes the
axiomatizability of the two remaining systems, and

.


