Post's iterative systems

= An algebra A containing just two elements, which we shall
designate as 0 and 1, constitutes what Post has called a
twovalued iterative system.

= Post has enumerated all such algebras, and we repeat below
what is essentially his enumeration.

=" However, in accordance with Theorem 1, we list only one out of
each set of equivalent algebras.

= Also, we omit those systems with only constant functions, which
are vacuously axiomatizable.

" Finally, we define the dual of a function f to be the function

obtained from f under the interchange of the two elements 0
and 1 of A.

=" The dual of an algebra A is the algebra whose functions are
precisely the duals of those of A. Since an algebra is isomorphic
to its dual, we include in our list only one out of each pair of
duals.
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A two-valued algebra is fully described by listing a set of primitive
functions. For this purpose we employ the following notation :

0 and 1 for the two (dual) constant functions;
N x for the self-dual function of complementation (or negation) ;

x V y for the union (maximum) function, and x A y, or simply
xy, for the dual intersection (minimum) function;

x = y (equivalence) and its dual x + y (symmetric difference);

x O Yy (conditional) and its dual x — y (set difference: xNy);

X + vy + z, self-dual;

(x,y,z) =x(yVvV2z),x7vy2z] =x(y = z),and, foreach n > 3,

d,(X1,..,Xp) = X2X3 .. Xy VX1X3 .. XV VX1 .. Xy 2Xn_1;
we shall not require a notation for the duals of these functions.
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In listing the two-element algebras, we first give the name of the
algebra (a capital letter with subscript) in Post's classification;
next, aset (f4,... f,) of primitive functions; and thirdly (in certain
cases) a fuller equivalent set of primitive functions.

For future convenience, we divide our list into five sections.
la. 04 = (N), O9 = (N, 0);
51(V), $4=(v,0), S3=(v,1), S¢=(v,0,1);
Ay = (V,A), A, = (V,A0), A1(V,A0,1);
Ly = (+) = (+,0), Ly =(+N) = (+N,0,1);
C;=(-V)=(+A0), C;=(—N)=(+A01).
lb. L,=(x+y+2z), Ls=(x+y+2zN).
. Fy, = (D), and F} = (©,d,,) foreachn > 3.
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M. Fg = ((x,¥,2)) = ((x,y,2), xy);
F;=((x,5,2),0) = ((x,y,2),xy,0) ;
Fs =(xy.z]) = (xy 2], (x,y,2),xy) ;
Co=(xyzlx\y)=(xyz] (xy,2),xy,xVy);
F¢ = ((x,y,2).d,) = ((x,9,2),d,,xy) foreachn = 3;
2= ((x,y,2),d,0) = ((x,9,2),d,0,xy) foreachn > 3;
(Note that, for n > 3, F; = (d,,) and F7 = (d,,,0).)
Ft = (Ix,y,z].d,, = (Ix,y,2),(x,y,2),d,, xy) for each n = 3.

IV. D, = (d3), D{ =(d3,x+y+2z), D3 =(d3,x+y+2zN).
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= For each of the systems la a complete set of axioms can be
chosen by inspection from the various familiar sets of
axioms for Boolean algebras and Boolean rings.

= Completeness can be proved by showing that the chosen set
of axioms serves to reduce every expression to a prescribed
normal form, and that distinct normal forms represent
distinct functions.

=" The same method applies to systems Ib.
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For example, if we temporarily abbreviate x + y + z to xyz,
system Lz has the following set of axioms:

NNx = x, N(xyz) = (Nx)yz, xyy = X,
Xyz = yxz, xyz = xzy, xy(zuv) = (xyz)uv.
Completeness is established by reference to the normal forms
a,Na,ab(cd( ... (pqr)..)),N(ab(cd( ... (pqr)..))),

where a, b, ... ,p, q,r are distinct variables in alphabetical
order.
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= The axiomatizability of these systems, which all contain the
conditional, follows from Corollary 2.2.

= Alternatively, for the dual systems, which contain x — y and
xy, a proof paralleling that for systems Ill can be given, in
terms of representations by maximal dual ideals.
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Observe that all of the systems Ill contain the connectives (x,y, z)
and xy.

Theorem 3. Let the algebra 4 with primitive connectives (x, y, z)
and xy satisfy the axioms

xx = x, xy=yx, x(yz) =(xy)z, (x,y,y) = xy,
xxxy=2x (xyz)=@xzy) (Xy2z)=(X23v.2), U
w(x,y,z) = (wx,y,z),and w(x,y,z) = (x, Wy, wz).

Then there exists a one-to-one mapping : x - X, of A into an
algebra A of sets, such that

(x.y,z2) =x(yVvZ)and (xy) =X y.
To prove this theorem, we first define x — yto mean xy = x.
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It then follows that x x;thatx c yandy _-ximplyx =y;
andthatx Zyandy -z implyx - z.

Anideal in A is defined to be any subset S = A satisfying
(1)ifx -yandxisin§, thenyisins,

(2)ifxand yarein §, then xyisin §.

An atom in A is an ideal § with the further property
(3)if (x,y,z)isin §, then either xyor xzisin §.
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Lemma. If x C y does not hold, then there exists an atom
containing x but not y.

= To prove the lemma, we first observe that the set S of all
z such that x  zis anideal containing x but not y.

= We shall show that every ideal with this property, if it is not
already an atom, can be extended to a larger ideal with the
same property.

= Since the union of an ascending chain of ideals with this
property is clearly an ideal with the same property, it will
follow by Zorn's lemma that there exists a maximal ideal
with this property, which must therefore be an atom
containing x but not .
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"let S be an jdeal, but not an atom, containing x but not y.

Then by definition S contains some (u, v, w) while
neither uv nor uw isin §.

Suppose there existed p and q in § such that puv : yand
quw Y.

It would follow that ruv € y and ruw C y, where r = pq
was in S. Hence

yr(uw,v,w) = (u,yrv,yrw) = (W, uyrv,uyrw) =
(u,ruv,ruw) = (u,rv,rw) = r(u,v,w),

thatis, r(u,v,w) y.
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*Then, since r and (u, v, w) were in S it would follow that
r(u,v,w) wasin §, and, since r(u,v,w) C y, that y was
in §, contrary to hypothesis.

Thus we may suppose, by symmetry, that puv  y holds for
hopins.

The set & of all z such that puv c zis clearly an ideal
properly containing S, and hence x, but not y.

This completes the proof of the lemma.
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Define x to be the set of all atoms that contain x.
From (1) it follows that x  y impliesx C y.

" The lemma shows thatif not x 7y, thennotx C y . Since the
mapping x — X preserves inclusion, it is one-to-one.

*That (xy) = x y follows from (1) and (2), if one notes that
Xy - xandxy cCy.

It remains to show that (x,y,z) =x (y V z).
= First, let (x,y,z) bein S, an atom. Then
(x,y,2) = (x,y,2)(x,y,2) = ((x,y,2)x,y.2) = (x,7,2),),2

whence by (3) either (x,y,2)y = (xy,y,2) = (xy, Xy, Xyz)Xxy
isinS,orelse (x,y,z)z = xz isin §, and in either case S is in
(xy)\ (xz2) =xy vxz=x(y V2Z).
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" Conversely, if Sisinx(y V z) we may suppose, by
symmetry, that Sisinxy = (xy);

then xy(x,y,z) = (xy,xy,xyz) = xy implies that

xy (x,v,z),sothat xyin S implies that (x,y,z)isin S,

thatis, that Sisin(x,y,z).

This completes the proof of the theorem.
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Theorem 4. The axioms 2l form a complete set for the algebra F .
Proof.

Let A be the free denumerably generated algebra with primitives

xy and (x, y, z) subject to axioms U, and let 4 be the isomorphic
algebra of sets.

Every identity of the two-element algebra F, holds also in 4, as a
subalgebra of a direct product of replicas of Fg. Thus every

identity of F. holds in the free algebra A, and so is a consequence
of the axioms 2.
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Theorem 5. Each of the algebras F-, Fg, C4, Fg, FY and FE is
axiomatizable.

Proof. Each of these algebras can be obtained by adjoining
further primitives to Fg.

To extend the result obtained for Fg it must be shown in each
case that adjoining a finite number of new axioms to the set

/U will ensure that the new primitives are properly represented
inA.

" For the algebra F-, with the additional primitive 0, it suffices
to adjoin the single additional axiom 2[,: 0x = 0.

That 0 is indeed the empty set in A follows from the fact that 0
in §, for an atom §, would imply by (1) that all y were in §,
contrary to the requirement § = A.
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= For Fc, with additional primitive [x, y, z|, we adjoin the
additional axioms Uc:
xy.z] = [x,zyl, =x[xyz]= [xy 2]
y[x,y_, Z] = XYZ,
x,(x,y,2),[x,y,2]) = x.
=Suppose Sisin [x,y,z]|; then[x,y,z]in Sand [x,y,z] ¢ x
implies x isin §.

" If neither ynor zisin §, then S isin x(y = z) as required.

|

Otherwise we may suppose that y isin S, whence y [x, y, Z]
xyzisinS,soalsozisinS,and again Sisinx(y = z) .

= For the converse, suppose that S is in x(y = z).

"If Sisin(xyz), it follows from xyz|x,y,z] = xz(xyz) = xyz
that xyz c [x,y,z]andso [x,y,z]isin S as required.
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" Otherwise x isin S but neither ynor zisin. §

"By (3),thatx = (x, (x,y,2),[x,y,2]) isin S implies that either
x(x,y,z) = (x,y,z) orx[x,y,z] = [x,y,Z]isin §S.

=Since, by (3), (x,y,2) in § would imply that either y or z were
in S, it must be that [x,y,z]isin S.

" For C4, with additional primitive x 7y, adjoin the further
axioms Wy,:
Ny =3V %, b ke I x yxy)=x" Y.
If xVy=(xVyx7y)isins, it follows by (3) that either
(xvy)x= xor(x /y)y =yisinS§,soSisin XV y.
= Conversely, if either x or y isin S, it follows fromx ©— x \ y
andy -x 1y thatx yisin§.
¢, for n = 3, contains the additional primitive d,,.
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= Abbreviate

XY1, - Yn) = (& .. (X Y1,Y2).¥3) - Yu-1):Yn)
and write x' for xq ... X;_1X(i+1) ... Xp, and d, for

dn(x1... %)

Adjoin the following finite set of further axioms:

S,,: axioms expressing that d,,(x4, ..., x,,) is invariant under any
permutation of its arguments;

D, d, (X1, ., %) = (dy (X1, ..., X)), xL, ..., x™),

Dt (X, i) = x0T

From D), with &,, it follows that d,, is in S whenever any x’ is in
S.
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" For the converse, suppose thatd,, isin S.

*Sinced,, = (d,,x', ..., x™), by (3) either

d,(d, x',.. . x" 1) =,x!,.. , x" isinSorelsed, x" =
x" isinS.

=If x"isin S, then Sisinx! Vv .-V X" asrequired.

Otherwise from (d,,, x1, ..., x™ 1) in § we conclude by (3) again
that either (d,, x1, ... ,x®*) orx® lisin S.

Continuing thus, either some one of x™,... ,x” isin §, or else
(d,, x*,x*)isin S, whence either d,x' = x' or d,x* = x%isin S.

3

In any case, Sisinx" V- X" as required.

Finally, for F% it evidently suffices to adjoin the axiom 2 to
those for Fy; and for Ft to adjoin the axioms s to those for Fy.
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Theorem 6. The algebra D, is axiomatizable.
D, is defined by the single primitive d(x,y,z) = xy xz yz.

= Let 4 be the free algebra on a denumerable set of generators
a, x,y,... subject to the same set of identities as D,. Fixing the
generator a, introduce the definitions

(4) XNgy = d(a xy), (X, y,2)g =x ,d(xy 2),
Oa = a.

"Let A, a be the algebra with the same elements as A, but with
primitive operations

d(x,y,z),x ,y,(x,¥,2Z)4 and 0.




Systems IV

"let Ay be the free algebra of type F3, with primitives
d(x,y,z),x vy, (x,v,2), and0, on the generators x, y, ...

Then the mapping x = x N, of the underlying Boolean
algebras clearly establishes an isomorphism of Ay onto 4.

=Let A, be a finite set of axioms for F3, and so for A,.

" Let A, be the corresponding axioms for the isomorphic
algebra A,.

= Using (A) to eliminate defined operations, we obtain from
2, asetof equations U expressed in the variables

a,x,y,...and the primitive d, of the algebra A.
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= If ¢ is any expression of 4, substituting 0, for a yields an
expression ¢, in the notation of 4,.

"If ¢@¢ is the expression of A corresponding to ¢, under the

isomorphism of Ay onto 4,, we see that formally ¢ is
obtained by substituting 0 for a in ¢.

* In the full notation of Boolean algebra, let ¢p; be the dual of
¢o; since d is self-dual, we see that ¢4 is equivalent to the
formal result of substituting 1 for ain ¢ , whence we have

the identity
¢ =¢1a ¢oNa
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= Now suppose ¢ = 1 is one of the equations of 2. This
means that ¢, = Y, was one of the axioms 2, of A,
whence ¢pg = Y and its dual ¢p; = Y, are Boolean
identities. From (H) it follows that ¢¢ = 1 p is a Boolean
identity. This shows that all the equations U are true in A.

= For the converse, let ¢ = Y be any true equation in the
notation of A. Then, setting a = 0, the equation ¢p¢ = Y,
is true in AO, and hence a consequence of the axioms 2, for
Ap.
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= Then ¢, = Y, is a consequence of the axioms 2L, in the
isomorphic algebra A,. Eliminating the defined
operations by (4), it follows that p = Y pis a
consequence of the axioms 2 for A.

= This completes the proof that D, is axiomatizable. An
obvious modification of this argument establishes the

axiomatizability of the two remaining systems, D4 and
Ds.




