Post's iterative systems

- An algebra A containing just two elements, which we shall designate as 0 and 1 , constitutes what Post has called a twovalued iterative system.
- Post has enumerated all such algebras, and we repeat below what is essentially his enumeration.
- However, in accordance with Theorem 1, we list only one out of each set of equivalent algebras.
- Also, we omit those systems with only constant functions, which are vacuously axiomatizable.
- Finally, we define the dual of a function f to be the function obtained from \boldsymbol{f} under the interchange of the two elements 0 and 1 of A.
- The dual of an algebra A is the algebra whose functions are precisely the duals of those of \boldsymbol{A}. Since an algebra is isomorphic to its dual, we include in our list only one out of each pair of duals.

Post's iterative systems

A two-valued algebra is fully described by listing a set of primitive functions. For this purpose we employ the following notation :
0 and 1 for the two (dual) constant functions;
$N x$ for the self-dual function of complementation (or negation);
$x \vee y$ for the union (maximum) function, and $x \wedge y$, or simply $x y$, for the dual intersection (minimum) function;
$\boldsymbol{x} \equiv \boldsymbol{y}$ (equivalence) and its dual $\boldsymbol{x}+\boldsymbol{y}$ (symmetric difference);
$x \supset y$ (conditional) and its dual $x-y$ (set difference: $x N y$);
$x+y+z$, self-dual;
$(x, y, z)=x(y \vee z),[x, y, z]=x(y \equiv z)$, and, for each $n \geq 3$,
$d_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{2} x_{3} \ldots x_{n} \vee x_{1} x_{3} \ldots x_{n} \vee \cdots \vee x_{1} \ldots x_{n-2} x_{n-1}$;
we shall not require a notation for the duals of these functions.

Post's iterative systems

In listing the two-element algebras, we first give the name of the algebra (a capital letter with subscript) in Post's classification; next, a set $\left(\boldsymbol{f}_{1}, \ldots \boldsymbol{f}_{n}\right)$ of primitive functions; and thirdly (in certain cases) a fuller equivalent set of primitive functions.
For future convenience, we divide our list into five sections.
la. $\boldsymbol{O}_{4}=(N), \boldsymbol{O}_{\mathbf{9}}=(\boldsymbol{N}, \mathbf{0})$;

$$
\begin{aligned}
& \boldsymbol{S}_{1}(\mathrm{~V}), \boldsymbol{S}_{4}=(\mathrm{V}, \mathbf{0}), \boldsymbol{S}_{3}=(\mathrm{V}, \mathbf{1}), \boldsymbol{S}_{6}=(\mathrm{V}, \mathbf{0}, \mathbf{1}) ; \\
& \boldsymbol{A}_{4}=(\mathrm{V}, \wedge), \quad \boldsymbol{A}_{2}=(\mathrm{V}, \wedge, \mathbf{0}), \boldsymbol{A}_{1}(\mathrm{~V}, \wedge, \mathbf{0}, \mathbf{1}) ; \\
& \boldsymbol{L}_{3}=(+)=(+, \mathbf{0}), \quad \boldsymbol{L}_{\mathbf{1}}=(+, \boldsymbol{N})=(+, \boldsymbol{N}, \mathbf{0}, \mathbf{1}) ; \\
& \boldsymbol{C}_{3}=(-, \mathrm{V})=(+, \wedge, \mathbf{0}), \quad \boldsymbol{C}_{\mathbf{1}}=(-, \boldsymbol{N})=(+, \wedge, \mathbf{0}, \mathbf{1}) .
\end{aligned}
$$

lb. $L_{4}=(x+y+z), \quad L_{5}=(x+y+z, N)$.
II. $\quad F_{4}=(\supset)$, and $F_{4}^{n}=\left(\supset, d_{n}\right)$ for each $n \geq 3$.

Post's iterative systems

III. $F_{6}=((x, y, z))=((x, y, z), x y)$;
$\boldsymbol{F}_{7}=((x, y, z), 0)=((x, y, z), x y, 0) ;$
$\boldsymbol{F}_{5}=([x, y, z])=([x, y, z],(x, y, z), x y) ;$
$C_{4}=([x, y, z], x \vee y)=([x, y, z],(x, y, z), x y, x \vee y) ;$
$F_{6}^{n}=\left((x, y, z), d_{n}\right)=\left((x, y, z), d_{n}, x y\right)$ for each $n \geq 3$;
$F_{7}^{n}=\left((x, y, z), d_{n}, 0\right)=\left((x, y, z), d_{n}, 0, x y\right)$ for each $n \geq 3$;
(Note that, for $n>3, F_{6}^{n}=\left(d_{n}\right)$ and $F_{7}^{n}=\left(d_{n}, 0\right)$.)
$F_{5}^{n}=\left([x, y, z], d_{n}=\left([x, y, z),(x, y, z), d_{n}, x y\right)\right.$ for each $n \geq 3$.
IV. $D_{2}=\left(d_{3}\right), D_{1}=\left(d_{3}, x+y+z\right), \quad D_{3}=\left(d_{3}, x+y+z, N\right)$.

Systems I

- For each of the systems la a complete set of axioms can be chosen by inspection from the various familiar sets of axioms for Boolean algebras and Boolean rings.
- Completeness can be proved by showing that the chosen set of axioms serves to reduce every expression to a prescribed normal form, and that distinct normal forms represent distinct functions.
- The same method applies to systems lb.

Systems I

For example, if we temporarily abbreviate $x+y+z$ to $x y z$, system L_{5} has the following set of axioms:

$$
\begin{gathered}
N N x=x, \quad N(x y z)=(N x) y z, \quad x y y=x \\
x y z=y x z, \quad x y z=x z y, \quad x y(z u v)=(x y z) u v .
\end{gathered}
$$

Completeness is established by reference to the normal forms

$$
a, N a, a b(c d(\ldots(p q r) \ldots)), N(a b(c d(\ldots(p q r) \ldots)))
$$

where $\boldsymbol{a}, \boldsymbol{b}, \ldots, \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ are distinct variables in alphabetical order.

Systems II

- The axiomatizability of these systems, which all contain the conditional, follows from Corollary 2.2.
- Alternatively, for the dual systems, which contain $\boldsymbol{x}-\boldsymbol{y}$ and $x y$, a proof paralleling that for systems III can be given, in terms of representations by maximal dual ideals.

Systems III

Observe that all of the systems III contain the connectives (x, y, z) and $x y$.
Theorem 3. Let the algebra A with primitive connectives ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$) and $x y$ satisfy the axioms

$$
\begin{aligned}
& x x=x, \quad x y=y x, \quad x(y z)=(x y) z, \quad(x, y, y)=x y, \\
& (x, x, y)=x, \quad(x, y, z)=(x, z, y), \quad(x, y, z)=(x, x y, z), \mathfrak{A} \\
& w(x, y, z)=(w x, y, z), \text { and } w(x, y, z)=(x, w y, w z) .
\end{aligned}
$$

Then there exists a one-to-one mapping : $x \rightarrow \bar{x}$, of A into an algebra \bar{A} of sets, such that

$$
\overline{(x, y, z)}=\bar{x}(\bar{y} \vee \bar{z}) \text { and } \overline{(x y})=\bar{x} \bar{y} .
$$

To prove this theorem, we first define $x \subset y$ to mean $x y=x$.

Systems III

It then follows that $x \subset x$; that $x \subset y$ and $y \subset x$ imply $x=y$; and that $x \subset y$ and $y \subset z$ imply $x \subset z$.

An ideal in A is defined to be any subset $S \neq \boldsymbol{A}$ satisfying (1) if $x \subset y$ and x is in S, then y is in S,
(2) if x and y are in S, then $x y$ is in S.

An atom in A is an ideal S with the further property
(3) if (x, y, z) is in S, then either $x y$ or $x z$ is in S.

Systems III

Lemma. If $x \subset y$ does not hold, then there exists an atom containing x but not y.

- To prove the lemma, we first observe that the set S_{0} of all z such that $x \subset z$ is an ideal containing x but not y.
- We shall show that every ideal with this property, if it is not already an atom, can be extended to a larger ideal with the same property.
- Since the union of an ascending chain of ideals with this property is clearly an ideal with the same property, it will follow by Zorn's lemma that there exists a maximal ideal with this property, which must therefore be an atom containing x but not y.

Systems III

- Let S be an ideal, but not an atom, containing x but not y.

Then by definition S contains some ($\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$) while neither $\boldsymbol{u v}$ nor $\boldsymbol{u w}$ is in S.
Suppose there existed \boldsymbol{p} and q in S such that $p \boldsymbol{u} \boldsymbol{v} \subset y$ and $q u w \subset y$.
It would follow that $r u v \subset y$ and $r u w \subset y$, where $r=p q$ was in S. Hence
$y r(u, v, w)=(u, y r v, y r w)=(u, u y r v, u y r w)=$ $(u, r u v, r u w)=(u, r v, r w)=r(u, v, w)$,
that is, $\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \subset \boldsymbol{y}$.

Systems III

- Then, since \boldsymbol{r} and ($\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$) were in S it would follow that $\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ was in S, and, since $\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \subset \boldsymbol{y}$, that \boldsymbol{y} was in S, contrary to hypothesis.
Thus we may suppose, by symmetry, that $\boldsymbol{p u v} \subset \boldsymbol{y}$ holds for no p in S.
The set ς of all z such that $\boldsymbol{p u v} \subset z$ is clearly an ideal properly containing S, and hence x, but not y.
This completes the proof of the lemma.

Systems III

Define \bar{x} to be the set of all atoms that contain \boldsymbol{x}.
From (1) it follows that $x \subset y$ implies $\bar{x} \subset \bar{y}$.

- The lemma shows that if not $x \subset y$, then not $\bar{x} \subset \bar{y}$. Since the mapping $x \rightarrow \bar{x}$ preserves inclusion, it is one-to-one.
- That $\overline{(x y)}=\bar{x} \bar{y}$ follows from (1) and (2), if one notes that $x y \subset x$ and $x y \subset y$.
It remains to show that $\overline{(x, y, z)}=\bar{x}(\bar{y} \vee \bar{z})$.
- First, let $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ be in S, an atom. Then
$(x, y, z)=(x, y, z)(x, y, z)=((x, y, z) x, y, z)=((x, y, z), y, z$
whence by (3) either $(x, y, z) y=(x y, y, z)=(x y, x y, x y z) x y$ is in S, or else $(x, y, z) z=x z$ is in S, and in either case S is in $\overline{(x y)} \vee \overline{(x z)}=\bar{x} \bar{y} \vee \bar{x} \bar{z}=\bar{x}(\bar{y} \vee \bar{z})$.

Systems III

- Conversely, if S is in $\overline{\boldsymbol{x}}(\overline{\boldsymbol{y}} \vee \overline{\boldsymbol{z}})$ we may suppose, by symmetry, that S is in $\bar{x} \bar{y}=(x y)$;
then $x y(x, y, z)=(x y, x y, x y z)=x y$ implies that $x y \subset(x, y, z)$, so that $x y$ in S implies that (x, y, z) is in S, that is, that S is in (x, y, z).
This completes the proof of the theorem.

Systems III

Theorem 4. The axioms \mathfrak{A} form \boldsymbol{a} complete set for the algebra \boldsymbol{F}_{6}. Proof.
Let A be the free denumerably generated algebra with primitives $x y$ and ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$) subject to axioms \mathfrak{A}, and let \bar{A} be the isomorphic algebra of sets.
Every identity of the two-element algebra F_{6} holds also in \bar{A}, as a subalgebra of a direct product of replicas of \boldsymbol{F}_{6}. Thus every identity of \boldsymbol{F}_{6} holds in the free algebra \boldsymbol{A}, and so is a consequence of the axioms \mathfrak{A}.

Systems III

Theorem 5. Each of the algebras $\boldsymbol{F}_{7}, \boldsymbol{F}_{5}, \boldsymbol{C}_{4}, \boldsymbol{F}_{6}^{\boldsymbol{n}}, \boldsymbol{F}_{7}^{n}$ and $\boldsymbol{F}_{5}^{\boldsymbol{n}}$ is axiomatizable.
Proof. Each of these algebras can be obtained by adjoining further primitives to \boldsymbol{F}_{6}.
To extend the result obtained for \boldsymbol{F}_{6} it must be shown in each case that adjoining a finite number of new axioms to the set \mathfrak{A} will ensure that the new primitives are properly represented in \bar{A}.

- For the algebra F_{7}, with the additional primitive 0 , it suffices to adjoin the single additional axiom $\mathfrak{A}_{7}: 0 x=0$.
That $\overline{\mathbf{0}}$ is indeed the empty set in \bar{A} follows from the fact that $\mathbf{0}$ in S, for an atom S, would imply by (1) that all \boldsymbol{y} were in S, contrary to the requirement $S \neq A$.

Systems III

- For F_{5}, with additional primitive $[x, y, z]$, we adjoin the additional axioms \mathfrak{A}_{5} :

$$
\begin{gathered}
{[x, y, z]=[x, z, y], \quad x[x, y, z]=[x, y, z],} \\
y[x, y, z]=x y z, \\
(x,(x, y, z),[x, y, z])=x .
\end{gathered}
$$

- Suppose S is in $\overline{[x, y, z]}$; then $[x, y, z]$ in S and $[x, y, z] \subset x$ implies x is in S.
- If neither y nor z is in S, then S is in $\bar{x}(\bar{y} \equiv \bar{z})$ as required.

Otherwise we may suppose that y is in S, whence $y[x, y, z]=$ $x y z$ is in S, so also z is in S, and again S is in $\bar{x}(\bar{y} \equiv \bar{z})$.

- For the converse, suppose that S is in $\bar{x}(\bar{y} \equiv \bar{z})$.
- If S is in $\overline{(x y z)}$, it follows from $x y z[x, y, z]=x z(x y z)=x y z$ that $x y z \subset[x, y, z]$ and so $[x, y, z]$ is in S as required.

Systems III

- Otherwise x is in S but neither y nor z is in. S
- By (3), that $x=(x,(x, y, z),[x, y, z])$ is in S implies that either $x(x, y, z)=(x, y, z)$ or $x[x, y, z]=[x, y, z]$ is in S.
- Since, by (3), (x, y, z) in S would imply that either y or z were in S, it must be that $[x, y, z]$ is in S.
- For C_{4}, with additional primitive $x \vee y$, adjoin the further axioms $\mathfrak{\Re}_{4}$:
$x \vee y=y \vee x, \quad x(x \vee y)=x, \quad(x \vee y, x, y)=x \vee y$.
If $x \vee y=(x \vee y, x, y)$ is in S, it follows by (3) that either $(x \vee y) x=x$ or $(x \vee y) y=y$ is in S, so S is in $\bar{x} \vee \bar{y}$.
- Conversely, if either x or y is in S, it follows from $x \subset x \vee y$ and $y \subset x \vee y$ that $x \vee y$ is in S.
F_{6}^{n}, for $n \geq 3$, contains the additional primitive $\boldsymbol{d}_{\boldsymbol{n}}$.

Systems III

- Abbreviate

$$
\left(x, y_{1}, \ldots, y_{n}\right)=\left(x,\left(x, \ldots\left(x,\left(x, y_{1}, y_{2}\right), y_{3}\right), \ldots, y_{n-1}\right), y_{n}\right)
$$

and write x^{i} for $x_{1} \ldots x_{i-1} x_{(i+1)} \ldots x_{n}$, and d_{n} for $d_{n}\left(x_{1} \ldots, x_{n}\right)$.

Adjoin the following finite set of further axioms:
\mathfrak{S}_{n} : axioms expressing that $\boldsymbol{d}_{\boldsymbol{n}}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ is invariant under any permutation of its arguments;
$\mathfrak{D}_{n}: d_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(d_{n}\left(x_{1}, \ldots, x_{n}\right), x^{1}, \ldots, x^{n}\right)$,
$\mathfrak{D}_{n}^{\prime}: x^{1} d_{n}\left(x_{1}, \ldots, x_{n}\right)=x^{1}$.
From $\mathfrak{D}_{n}^{\prime}$ with \mathfrak{S}_{n} it follows that d_{n} is in S whenever any x^{i} is in S.

Systems III

- For the converse, suppose that $d_{\boldsymbol{n}}$ is in S.
- Since $d_{n}=\left(d_{n}, x^{1}, \ldots, x^{n}\right)$, by (3) either
$d_{n}\left(d_{n}, x^{1}, \ldots, x^{n-1}\right)=\left(d_{n}, x^{1}, \ldots, x^{n-1}\right)$ is in S or else $d_{n} x^{n}=$ x^{n} is in S.
- If x^{n} is in S, then S is in $\bar{x}^{1} \vee \cdots \vee \bar{x}^{n}$ as required.

Otherwise from ($\left.d_{n}, x^{1}, \ldots, x^{n-1}\right)$ in S we conclude by (3) again that either $\left(d_{n}, x^{1}, \ldots, x^{n-2}\right)$ or x^{n-1} is in S.
Continuing thus, either some one of x^{n}, \ldots, x^{3} is in S, or else (d_{n}, x^{1}, x^{2}) is in S, whence either $d_{n} x^{1}=x^{1}$ or $d_{n} x^{2}=x^{2}$ is in S.
In any case, S is in $\bar{x}^{1} \vee \cdots \vee \bar{x}^{n}$ as required.
Finally, for \boldsymbol{F}_{7}^{n} it evidently suffices to adjoin the axiom $\mathfrak{\Theta}_{7}$ to those for F_{6}^{n}; and for F_{5}^{n} to adjoin the axioms \mathfrak{A}_{5} to those for $\boldsymbol{F}_{6}^{\boldsymbol{n}}$.

Systems IV

Theorem 6. The algebra D_{2} is axiomatizable.
D_{2} is defined by the single primitive $d(x, y, z)=x y \vee x z \vee y z$.

- Let \boldsymbol{A} be the free algebra on a denumerable set of generators $\boldsymbol{a}, \boldsymbol{x}, \boldsymbol{y}, \ldots$ subject to the same set of identities as \boldsymbol{D}_{2}. Fixing the generator a, introduce the definitions
(Δ)

$$
\begin{aligned}
& x \wedge_{a} y=d(a, x, y), \quad(x, y, z)_{a}=x \wedge_{a} d(x, y, z), \\
& 0 a=a .
\end{aligned}
$$

- Let A_{a} a be the algebra with the same elements as A, but with primitive operations

$$
d(x, y, z), x \wedge_{a} y,(x, y, z)_{a} \text {, and } 0_{a} .
$$

Systems IV

- Let A_{0} be the free algebra of type F_{7}^{3}, with primitives $d(x, y, z), x \wedge y,(x, y, z)$, and 0 , on the generators x, y, \ldots. Then the mapping $x \rightarrow x \wedge N_{a}$ of the underlying Boolean algebras clearly establishes an isomorphism of \boldsymbol{A}_{0} onto $\boldsymbol{A}_{\boldsymbol{a}}$.
- Let \mathfrak{A}_{0} be a finite set of axioms for \boldsymbol{F}_{7}^{3}, and so for \boldsymbol{A}_{0}.
- Let $\mathfrak{A}_{\boldsymbol{a}}$ be the corresponding axioms for the isomorphic algebra A_{a}.
- Using (Δ) to eliminate defined operations, we obtain from $\mathfrak{A}_{\boldsymbol{a}}$ a set of equations \mathfrak{A} expressed in the variables
$\boldsymbol{a}, \boldsymbol{x}, \boldsymbol{y}, \ldots$ and the primitive \boldsymbol{d}, of the algebra \boldsymbol{A}.

Systems IV

- If $\boldsymbol{\phi}$ is any expression of \boldsymbol{A}, substituting $\mathbf{0}_{\boldsymbol{a}}$ for \boldsymbol{a} yields an expression $\boldsymbol{\phi}_{\boldsymbol{a}}$ in the notation of $\boldsymbol{A}_{\boldsymbol{a}}$.
- If ϕ_{0} is the expression of A_{0} corresponding to ϕ_{a} under the isomorphism of A_{0} onto A_{a}, we see that formally ϕ_{0} is obtained by substituting 0 for \boldsymbol{a} in $\boldsymbol{\phi}$.
- In the full notation of Boolean algebra, let ϕ_{1} be the dual of ϕ_{0}; since \boldsymbol{d} is self-dual, we see that ϕ_{1} is equivalent to the formal result of substituting 1 for \boldsymbol{a} in ϕ, whence we have the identity

$$
\phi=\phi_{1} a \vee \phi_{0} N a
$$

Systems IV

- Now suppose $\phi=\psi$ is one of the equations of \mathfrak{A}. This means that $\phi_{a}=\psi_{a}$ was one of the axioms \mathfrak{A}_{0} of A_{0}, whence $\boldsymbol{\phi}_{0}=\psi_{0}$ and its dual $\boldsymbol{\phi}_{1}=\boldsymbol{\psi}_{1}$, are Boolean identities. From (H) it follows that $\boldsymbol{\phi}=\psi \mathrm{p}$ is a Boolean identity. This shows that all the equations \mathfrak{A} are true in \boldsymbol{A}.
- For the converse, let $\phi=\psi$ be any true equation in the notation of A. Then, setting $a=0$, the equation $\phi_{0}=\psi_{0}$ is true in AO , and hence a consequence of the axioms \mathfrak{A}_{0} for A_{0}.

Systems IV

- Then $\boldsymbol{\phi}_{a}=\psi_{a}$ is a consequence of the axioms $\mathfrak{A}_{\mathrm{a}}$ in the isomorphic algebra $\boldsymbol{A}_{\boldsymbol{a}}$. Eliminating the defined operations by (Δ), it follows that $\phi=\psi \mathrm{p}$ is a consequence of the axioms \mathfrak{A} for \boldsymbol{A}.
- This completes the proof that D_{2} is axiomatizable. An obvious modification of this argument establishes the axiomatizability of the two remaining systems, $\boldsymbol{D}_{\mathbf{1}}$ and D_{3}.

