
Post's iterative systems
An algebra containing just two elements, which we shall

designate as 0 and 1, constitutes what Post has called a
twovalued iterative system.
Post has enumerated all such algebras, and we repeat below

what is essentially his enumeration.
However, in accordance with Theorem 1, we list only one out of

each set of equivalent algebras.
Also, we omit those systems with only constant functions, which

are vacuously axiomatizable.
Finally, we define the dual of a function to be the function

obtained from under the interchange of the two elements 0
and 1 of .
The dual of an algebra is the algebra whose functions are

precisely the duals of those of . Since an algebra is isomorphic
to its dual, we include in our list only one out of each pair of
duals.



Post's iterative systems
A two-valued algebra is fully described by listing a set of primitive
functions. For this purpose we employ the following notation :

0 and 1 for the two (dual) constant functions;
for the self-dual function of complementation (or negation) ;∨ for the union (maximum) function, and ∧ , or simply

, for the dual intersection (minimum) function;≡ (equivalence) and its dual + (symmetric difference);⊃ (conditional) and its dual — (set difference: );+ + , self-dual;, , = ∨ , , , = ( ≡ ), and, for each ≥ ,, … , = … ∨ … ∨⋯∨ … ;
we shall not require a notation for the duals of these functions.



Post's iterative systems
In listing the two-element algebras, we first give the name of the
algebra (a capital letter with subscript) in Post's classification;
next, a set ( , … ) of primitive functions; and thirdly (in certain
cases) a fuller equivalent set of primitive functions.
For future convenience, we divide our list into five sections.
Ia. = , = ( , );∨ , = ∨, , = ∨, , = (∨, , ) ;= ∨,∧ , = ∨,∧, , (∨,∧, , ) ;= + = +, , = +, = (+, , , ) ;= −,∨ = +,∧, , = −, = (+,∧, , ) .
Ib. = + + , = ( + + , ).
II. = ⊃ , and = (⊃, ) for each ≥ .



Post's iterative systems
III. = , , = , , , ;= , , , = ( , , , , ) ;= , , = ( , , , , , , ) ;= , , , ∨ = ( , , , , , , , ∨ ) ;= , , , = ( , , , , ) for each ≥ ;= , , , , = ( , , , , , ) for each ≥ ;

(Note that, for > , = = , . )= ( , , , = ( , , , , , , , ) for each ≥ .

IV. = , = , + + , = ( , + + , ).



Systems I
For each of the systems la a complete set of axioms can be

chosen by inspection from the various familiar sets of
axioms for Boolean algebras and Boolean rings.
Completeness can be proved by showing that the chosen set

of axioms serves to reduce every expression to a prescribed
normal form, and that distinct normal forms represent
distinct functions.
The same method applies to systems lb.



Systems I
For example, if we temporarily abbreviate + + to ,
system has the following set of axioms:= , = , = ,= , = , ( ) = ( ) .
Completeness is established by reference to the normal forms, , ( ( … … )), ( … … ),
where , , … , , , are distinct variables in alphabetical
order.



Systems II
The axiomatizability of these systems, which all contain the

conditional, follows from Corollary 2.2.
Alternatively, for the dual systems, which contain — and

, a proof paralleling that for systems III can be given, in
terms of representations by maximal dual ideals.



Systems III
Observe that all of the systems III contain the connectives ( , , )
and .
Theorem 3. Let the algebra with primitive connectives ( , , )
and satisfy the axioms= , = , = , , , = ,, , = , , , = , , , , , = , , ,( , , ) = ( , , ), and ( , , ) = ( , , ).
Then there exists a one-to-one mapping ∶ → , of into an
algebra of sets, such that( , , ) = ∨ and ( ) = .
To prove this theorem, we first define ⊂ to mean = .



Systems III
It then follows that ⊂ ; that ⊂ and ⊂ imply = ;
and that ⊂ and ⊂ imply ⊂ .

An ideal in is defined to be any subset ≠ satisfying
(1) if ⊂ and is in , then is in ,
(2) if and are in , then is in .
An atom  in is an ideal with the further property
(3) if ( , , ) is in , then either or is in .



Systems III
Lemma. If ⊂ does not hold, then there exists an atom
containing but not .
To prove the lemma, we first observe that the set of all

such that ⊂ is an ideal containing but not .
We shall show that every ideal with this property, if it is not

already an atom, can be extended to a larger ideal with the
same property.
Since the union of an ascending chain of ideals with this

property is clearly an ideal with the same property, it will
follow by Zorn's lemma that there exists a maximal ideal
with this property, which must therefore be an atom
containing but not .



Systems III
Let be an ¡deal, but not an atom, containing but not .
Then by definition contains some ( , , ) while
neither nor is in .
Suppose there existed and in such that ⊂ and⊂ .
It would follow that ⊂ and ⊂ , where =
was in . Hence( , , ) = ( , , ) = ( , , ) =( , , ) = ( , , ) = ( , , ),
that is, ( , , ) ⊂ .



Systems III
Then, since and ( , , ) were in it would follow that( , , ) was in , and, since ( , , ) ⊂ , that was

in , contrary to hypothesis.
Thus we may suppose, by symmetry, that ⊂ holds for
no in .
The set of all such that ⊂ is clearly an ideal
properly containing , and hence , but not .
This completes the proof of the lemma.



Systems III
Define to be the set of all atoms that contain .
From (1) it follows that ⊂ implies ⊂ .
The lemma shows that if not ⊂ , then not ⊂ . Since the

mapping → preserves inclusion, it is one-to-one.
That ( ) = follows from (1) and (2), if one notes that⊂ and ⊂ .
It remains to show that ( , , ) = ( ∨ ) .
First, let ( , , ) be in , an atom. Then( , , ) = ( , , )( , , ) = (( , , ) , , ) = (( , , ), ,
whence by (3) either ( , , ) = ( , , ) = ( , , )
is in , or else ( , , ) = is in , and in either case is in( ) ∨ ( ) = ∨ = ( ∨ ).



Systems III
Conversely, if is in ( ∨ ) we may suppose, by

symmetry, that is in = ( );
then , , = , , = implies that⊂ ( , , ), so that in implies that ( , , ) is in ,
that is, that is in( , , ) .
This completes the proof of the theorem.



Systems III
Theorem 4. The axioms form complete set for the algebra .
Proof.
Let be the free denumerably generated algebra with primitives

and ( , , ) subject to axioms , and let be the isomorphic
algebra of sets.
Every identity of the two-element algebra holds also in , as a
subalgebra of a direct product of replicas of . Thus every
identity of holds in the free algebra , and so is a consequence
of the axioms .



Systems III
Theorem 5. Each of the algebras , , , , and is
axiomatizable.
Proof. Each of these algebras can be obtained by adjoining
further primitives to .
To extend the result obtained for it must be shown in each
case that adjoining a finite number of new axioms to the set

will ensure that the new primitives are properly represented
in .
For the algebra , with the additional primitive 0, it suffices

to adjoin the single additional axiom 7: = .
That is indeed the empty set in follows from the fact that 0
in , for an atom , would imply by (1) that all were in ,
contrary to the requirement ≠ .



Systems III

For , with additional primitive , , , we adjoin the
additional axioms :, , = , , , , , = , , ,, , = ,( , ( , , ), [ , , ]) = .
Suppose is in [ , , ];  then [ , , ] in and [ , , ] ⊂

implies is in .
 If neither nor is in , then is in ( ≡ ) as required.
Otherwise we may suppose that y is in , whence , , =

is in , so also is in , and again is in ( ≡ ) .
For the converse, suppose that is in ( ≡ ).
 If is in( ) , it follows from , , = ( ) =

that ⊂ [ , , ] and so [ , , ] is in as required.



Systems III
Otherwise is in but neither nor is in.
By (3), that = ( , ( , , ), [ , , ]) is in implies that either( , , ) = ( , , ) or [ , , ] = [ , , ] is in .
Since, by (3), ( , , ) in would imply that either or were

in , it must be that [ , , ] is in .
For , with additional primitive ∨ , adjoin the further

axioms :∨ = ∨ , ∨ = , ∨ , , = ∨ .
If ∨ = ( ∨ , , ) is in , it follows by (3) that either∨ = or ( ∨ ) = is in , so is in ∨ .
Conversely, if either or is in , it follows from ⊂ ∨

and ⊂ ∨ that ∨ is in .
, for ≥ , contains the additional primitive .



Systems III
Abbreviate( , , … , ) = ( , ( , … ( , ( , , ), ), … , ), )
and write for … … , and for( … , ).
Adjoin the following finite set of further axioms:

: axioms expressing that ( , … , ) is invariant under any
permutation of its arguments;: , … , = ( , … , , , … , ),: , … , = .
From with it follows that is in whenever any is in

.



Systems III
For the converse, suppose that is in .
Since = ( , , … , ), by (3) either( , , … , ) = ( , , … , ) is in or else =

is in .
 If is in , then is in ∨⋯∨ as required.
Otherwise from ( , , … , ) in we conclude by (3) again
that either ( , , … , ) or is in .
Continuing thus, either some one of , … , is in , or else( , , ) is in , whence either = or = is in .
In any case, is in ∨⋯∨ as required.
Finally, for it evidently suffices to adjoin the axiom to
those for ; and for to adjoin the axioms to those for .



Systems IV
Theorem 6. The algebra is axiomatizable.

is defined by the single primitive ( , , ) = ∨ ∨ .
 Let be the free algebra on a denumerable set of generators, , , … subject to the same set of identities as . Fixing the

generator , introduce the definitions
(Δ) ∧ = , , , , , = ∧ ( , , ),= .
Let a be the algebra with the same elements as , but with

primitive operations, , , ∧ , , , , and .



Systems IV
Let be the free algebra of type , with primitives( , , ), ∧ , ( , , ), and 0, on the generators , , …
Then the mapping → ∧ of the underlying Boolean
algebras clearly establishes an isomorphism of onto .
Let be a finite set of axioms for , and so for .
Let be the corresponding axioms for the isomorphic

algebra .
Using (Δ) to eliminate defined operations, we obtain from

a set of equations expressed in the variables, , , … and the primitive , of the algebra .



Systems IV
 If is any expression of , substituting for yields an

expression in the notation of .
 If is the expression of corresponding to under the

isomorphism of onto , we see that formally is
obtained by substituting 0 for in .

 In the full notation of Boolean algebra, let be the dual of
; since is self-dual, we see that is equivalent to the

formal result of substituting 1 for in , whence we have
the identity = ∨



Systems IV
 Now suppose = is one of the equations of . This

means that = was one of the axioms of ,
whence = and its dual = , are Boolean
identities. From (H) it follows that = p is a Boolean
identity. This shows that all the equations are true in .

 For the converse, let = be any true equation in the
notation of . Then, setting = , the equation =
is true in A0, and hence a consequence of the axioms for

.



Systems IV
 Then = is a consequence of the axioms in the

isomorphic algebra . Eliminating the defined
operations by (Δ) , it follows that = p is a
consequence of the axioms for .

 This completes the proof that is axiomatizable. An
obvious modification of this argument establishes the
axiomatizability of the two remaining systems, and

.


