IDENTITIES IN FINITE ALGEBRAS BY R. C. LYNDON

A finite algebraic system *A* will be constructed, with the property that the set of all laws of *A* is not a consequence of any finite subset of these laws.

A is of order seven, with a binary (non-associative) operation written as multiplication, and a 0-ary operation (or constant element) 0. Denoting the elements of A by
0, e, b_i, b₂, c, d₁, d₂, the multiplication is defined by setting ce = c, cb_j = d_j, d_je = d_j, d_jb_k = d_j
(j, k = 1, 2) and setting all other products equal to 0.

Lemma 1. The following laws hold in A: (A123): 0x = 0, x0 = 0, x(yz) = 0;(B_n): $((...(x_1x_2)x_3)...)x_n)x_1 = 0$ (n = 1, 2, ...); (C_n): $((...((x_1x_2)x_3)...)x_n)x_2 = (...((x_1x_2)x_3)...)x_n$ (n = 1, 2, ...).

Moreover, every law of \mathcal{A} that contains no more than n indeterminates is a consequence of A123 and of B_{n} , C_m

for *n n*.

Proof.

Verification that $A123_{,B_n}$ and C_n hold identically in \mathcal{A} is routine.

- For the second assertion, let $\phi_{\alpha} = \phi_{\beta}$ be any law of \mathcal{A} containing at most n indeterminates.
- By A we may suppose that each member is either 0 or a leftassociated product, which we abbreviate as

 $\phi_{\alpha} = x_{\alpha_1} x_{\alpha_2} \dots x_{\alpha_{\mu'}} \quad \phi_{\beta} = x_{\beta_1} x_{\beta_2} \dots x_{\beta_{\mu}}$

- By B_n and C_n for m n, we can eliminate any repetition among the first n + 1 arguments of ϕ_{α} or of ϕ_{β} , whence we may suppose that μ, ν n and that neither product contains repetitions.
- If ϕ_{α} , say, is not 0, then setting $x_{\alpha_1} = c, x_{\alpha_2} = \cdots = x_{\alpha_{\mu}} = e$, and any other x = 0, gives $\phi_{\alpha} = c$; it follows that ϕ_{β} is not 0, and indeed that $x_{\beta_1} = x_{\alpha_1}$, and that all the indeterminates of ϕ_{β} are among those of ϕ_{α} .

- By symmetry, $\mu = \nu$ and the x_{α_i} are a permutation of the x_{β_i} .
- If some x_1 preceded x_2 in ϕ_{α} , while x_2 preceded x_1 in ϕ_{β} (therefore $x_{\alpha_i} \quad x_1, x_2$), then setting $x_{\alpha_1} = c, x_1 = b_1, x_2 = b_2$ and all other x = e gives $\phi_{\alpha} = d_1$ and $\phi_{\beta} = d_2$.
- Since this contradicts $\phi_{\alpha} = \phi_{\beta}$, the x_{β_i} must be the identical permutation of the x_{α_i} , whence ϕ_{α} and ϕ_{β} are formally identical.
- Define $\psi_{\alpha} = x_{\alpha_1} x_{\alpha_2} \dots x_{\alpha_{\mu}}$ to have property P_n if ψ_{α} contains *n* indeterleast once to the left of the second minates, and in the product ψ_{α} each of them occurs at occurrence of x_{α_i} .
- Note that this implies that if x_{α_k} is a later occurrence of x_{α_1} then k > n.

Lemma 2. If $\psi_{\alpha} = \psi_{\beta}$ is a formal consequence of the laws A and B_n , C_n for m < n, and if ψ_{α} has the property P_n , then ψ_{β} also has the property P_n .

Proof. It is sufficient to consider the case where $\psi_{\alpha} = \psi_{\beta}$ results from a single application of A, B_{n} , or C_{n} .

Now, no application of A is possible, since ψ_{α} contains no part 0 or of the form u(vw).

For an application of B_m or C_m we may suppose, by symmetry, that ψ_{α} contains a part of the form $y_1y_2 \dots y_my_d$, where $y_d = y_1$ in the case of B_m and $y_d = y_2$ in the case of C_m .

Clearly $y_1 = x_{\alpha_1} \dots x_{\alpha_k}$ for some k = 1, and therefore

$$y_2 = x_{\alpha_{k+1}}, \ldots, y_d = x_{\alpha_{k+m}}.$$

For B_n , $y_d = y_1 = x_{\alpha_1} \dots x_{\alpha_k}$ is clearly impossible for k > 1; while if k = 1, $y_d = x_{\alpha_{n+1}}$ is a later occurrence of $y_1 = x_{\alpha_1}$, impossible by property P_n since n + 1 = n.

Therefore no B_n , m < n, is applicable. Finally, if some C_n is applicable it can only delete an occurrence after the first of some indeterminate other than x_{α_1} , or else an occurrence after the second of x_{α_1} , and hence in either case preserves the property P_n .

Theorem. If *L* is any finite set of laws of \mathcal{A} , then some one of the laws B_n is not a consequence of *L*.

Proof. The finite set *L* of laws will contain fewer than *n* indeterminates, for some finite *n*.

By Lemma 1, any consequence of L is a consequence of A123 and B_m , C_m for m < n.

Now $x_1x_2 \dots x_nx_1$, the left member of B_n , has property P_n , while **0**, the right member, has not.

Therefore, by Lemma 2, B_n is not a consequence of A123 and B_n , C_m for m < n, whence B_n is not a consequence of L.