
Graph Patterns and Visualization

Contents

Graph cores . 1

Dyads and triads . 1

Motifs . 2

Visualisation . 5

Mixing patterns . 21

Assortative Mixing . 21

Assortativity measures . 22

Basic network analysis pipeline . 23

Graph cores

A k-core is the largest subgraph such that each vertex is connected to at least k others in subset. Every
vertex in k-core has a degree ki ≥ k. (k + 1)-core is always subgraph of k-core. The core number of a vertex
is the highest order of a core that contains this vertex.

Dyads and triads

Dyad is a pair of vertices and possible relational ties between them: * mutual

• asymmetric

• null (non-existent)

Triad is a subgraph of three vertices and possible ties between them. Triad census :16 isomorphism classes.
D - down, U - up, T - transitive, C - cyclic. Mutual dyads | assymetric dyads | null dyads.

1

Motifs

Motifs are often defined as recurrent and statistically significant sub-graphs or patterns. Here, we consider
motifs as sub-graphs of a given graph, which are isomorphic to defined sample. Motifs are not induced
subgraphs, i.e. they do not contain all the graph edges between selected vertices. Motifs appear in a network
more frequently than in a comparable random network

• calculate the number of occurrences of a sub graph

• evaluate the significance

For G′ subgraph (motif candidate) of G,

Zscore(G′) = FG(G′)− µR(G′)
σR(G′)

R - random graph, µ - mean frequency, σ -standard deviation.

2

3

4

Let’s define a simple sample motif and calculate, if it is often in our graph:

#install.packages("rgl")
library('igraph')
sample1 = graph(c(c(1,2), c(2,3)))
plot(sample1)
isoclass_num = graph.isoclass(sample1) # defining number of corresponding isoclass
motifs3[isoclass_num] # returns number of motifs
#Here is our old friend:
g = graph.famous("Zachary")
motifs3 = graph.motifs(g, size = 3)
#Due to high computational time (isomorphism checks), `graph.motifs` are
#implemented for graps of sizes 3 and 4 only. However, we can easy check numbers
#for all motifs of size 4 to find more frequent patterns:
motifs4 = graph.motifs(g, size = 4)
#The most frequent pattern is fifth. Let's draw it.
plot(graph.isocreate(g,size=4, number=5))
#Not what we're looking for.. Second most frequent (seventh):
plot(graph.isocreate(g,size=3, number=7))

That is certainly better.

Visualisation

There are currently three different functions in the igraph package which can draw graph in various ways:

• plot.igraph does simple non-interactive 2D plotting to R devices. Actually it is an implementation of
the plot generic function, so you can write plot(graph) instead of plot.igraph(graph). As it used the
standard R devices it supports every output format for which R has an output device. The list is quite
impressing: PostScript, PDF files, XFig files, SVG files, JPG, PNG and of course you can plot to the
screen as well using the default devices, or the good-looking anti-aliased Cairo device. See plot.igraph
for some more information.

• tkplot does interactive 2D plotting using the tcltk package. It can only handle graphs of moderate
size, a thousend vertices is probably already too many. Some parameters of the plotted graph can be

5

http://igraph.org/r/doc/plot.graph.html

changed interactively after issuing the tkplot command: the position, color and size of the vertices and
the color and width of the edges. See tkplot for details.

• rglplot is an experimental function to draw graphs in 3D using OpenGL. See rglplot for some more
information.

Let’s draw a graph-ring using different three methods.

library(igraph)
library(rgl)

g <- graph.ring(10)
g$layout <- layout.circle
plot(g)

6

http://igraph.org/r/doc/tkplot.html
http://igraph.org/r/doc/rglplot.html

1

2

34

5

6

7

8 9

10

#doesn't work in R Markdown
tkplot(g)

Loading required package: tcltk

[1] 1

rglplot(g)

Layout

Either a function or a numeric matrix. It specifies how the vertices will be placed on the plot.
Let’s demonstrate how it works on some graph. For example graph which based on barabashi model.

g <- barabasi.game(50)

7

• layout.auto - tries to choose an appropriate layout function for the supplied graph, and uses that to
generate the layout.

plot(g, layout=layout.auto, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

8

1

2

3

4
5

6

7

8

9
10

11 12 13

14

15 16

17

18

19
20

21

22

23

24

25

26

27

28

29

30
31

32

33
34

35

36
37

38

39

40

41

42

43

44

4546

47

48

49

50

• layout.random - simply places the vertices randomly on a square.

plot(g, layout=layout.random, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

9

1

2
3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18
19

20

21

22

23

24

25

26

27

28 29
30

31

32

33

34 35

36

37
38

39
40

41

42

43

44

45 46 47

48

49

50

• layout.circle - places the vertices on a unit circle equidistantly.

plot(g, layout=layout.circle, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

10

1
2
3

4
5

6
7

8910111213141516171819
20

21
22

23
24
25
26
27
28
29
30
31

32
333435363738394041424344

45
46
47
48
49
50

• layout.sphere - places the vertices (approximately) uniformly on the surface of a sphere, this is thus
a 3d layout.

plot(g, layout=layout.sphere, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

11

1

2

3

4
5

6

7

8
9

10

11

12

13
14

15

16

17

18

1920

21

22

23

24

25 26

27

28

29

30

3132

33

34

35

36

37
38

39

40

41

42
43

44

45

46

47

48
49

50

• layout.fruchterman.reingold uses a force-based algorithm proposed by Fruchterman and Reingold.

plot(g, layout=layout.fruchterman.reingold, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

12

1

2

3

4 5

6

7

8

9

10
11

12
13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

4243

44

45

46

47

48

49

50

• layout.kamada.kawai is another force based algorithm.

plot(g, layout=layout.kamada.kawai, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

13

1

2

3 4

5

6
7

89

10

11

1213 14

15
16

17 18

19 20

21

22

23 24

25

26

27

28

29

30

31 32

33

34

35

36
37

38
39

40

41

42

43

44

45
46

47

48
49

50

• layout.spring is a spring embedder algorithm.

plot(g, layout=layout.spring, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

14

1
2

3

4
5

6

7

89

10

11

12

13

14
15

16 17
18 1920

21
22

23

24
25

26

27

28

29

30

31

32

33
34 35

36

37
38

39 40

41

42

43

44

4546
47 48

49

50

• layout.fruchterman.reingold.grid is similar to layout.fruchterman.reingold but repelling force is
calculated only between vertices that are closer to each other than a limit, so it is faster.

plot(g, layout=layout.fruchterman.reingold.grid, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

15

1

2

3

4

5

67

8
9

10

11

12

13

14

15
16

17

18
19

20

21 22

23

24

25
26

27

28

29

30

31

32
33

34

35

36
3738

39

40

4142

43

44

45
46

47

48

49

50

• layout.lgl is for large connected graphs, it is similar to the layout generator of the Large Graph
Layout software http://lgl.sourceforge.net/.

plot(g, layout=layout.lgl, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

16

http://lgl.sourceforge.net/
http://lgl.sourceforge.net/

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15
16

17
18 19

20

21

22

23
24

25

26

27

28
29

30

3132

33

34
35

36
37

38

39

40

41

42

43
44

45

46

47

4849

50

• layout.graphopt is a port of the graphopt layout algorithm by Michael Schmuhl. graphopt version
0.4.1 was rewritten in C and the support for layers was removed (might be added later) and a code was
a bit reorganized to avoid some unneccessary steps is the node charge (see below) is zero.

• layout.svd is a currently experimental layout function based on singular value decomposition.

• layout.norm normalizes a layout, it linearly transforms each coordinate separately to fit into the given
limits.

• layout.drl is another force-driven layout generator, it is suitable for quite large graphs.

• layout.reingold.tilford generates a tree-like layout, so it is mainly for tree.

Highlight components

Let’s make different color for each graph component

g <- erdos.renyi.game(100, 1/100)

l <- layout.fruchterman.reingold(g)

op = par(mfrow = c(1,2))
plot(g, layout=l, vertex.size=5, vertex.label=NA)

comps <- clusters(g)$membership
colbar <- rainbow(max(comps)+1)

17

V(g)$color <- colbar[comps+1]

plot(g, layout=l, vertex.size=5, vertex.label=NA)

Highlight communities in graph

Let’s make different color for each community

g <- graph.full(5) %du% graph.full(5) %du% graph.full(5)
g <- add.edges(g, c(1,6, 1,11, 6,11))

op = par(mfrow = c(1,2))
plot(g, layout = layout.kamada.kawai)

com <- spinglass.community(g, spins=5)
V(g)$color <- com$membership+1
g <- set.graph.attribute(g, "layout", layout.kamada.kawai(g))
plot(g, vertex.label.dist=1.5)

18

1

2

3
4

5

6

7 8
9

10

11

12

13

14
15

1

23

4

5

6

7

8

9

10

11

12 13

1415

par(op)

Trees Visualization

plot(graph.tree(50, 2))

19

1

2

3

4
5

6
7

8

9

10
11

12
1314

15

16
17

18
19

20
2122

23

24

25

262728
29 3031

32
33

34
35

36
37

38
39

4041

42
434445

46
47

48

49

50

We can use layout = layout.reingold.tilford to draw tree

plot(graph.tree(50, 2), vertex.size=3, vertex.label=NA, layout=layout.reingold.tilford)

20

tkplot(graph.tree(50, 2, mode="undirected"), vertex.size=10,
vertex.color="green")

[1] 2

Mixing patterns

• Assortative mixing, “like links with like”, attributed of connected nodes tend to be more similar than if
there were no such edge

• Disassortative mixing, “like links with dislike”, attributed of connected nodes tend to be less similar
than if there were no such edge Examples:

• assortative mixing - in social networks political beliefs, obesity, race
• disassortative mixing - dating network, food web (predator/prey), economic networks (produc-

ers/consumers)

Assortative Mixing

Assortative Mixing coefficient shows whether nodes with the same attribute values tend to form connections.
Download Caltech friendship network. Inspect nodes attributes and compute assortativity coefficients with
assortativity function

Assortative mixing by node degree, xi ← ki − 1:

21

https://www.dropbox.com/s/tz9teeaq79n0cx4/Caltech.gml?dl=0

r =

∑
ij

(
Aij − kikj

2m

)
kikj∑

ij

(
kiδij − kikj

2m

)
kikj

Political polarization on Twitter: political retweet network, red color - “right-learning” users, blue color -
“left learning” users.

Assortativity measures

Discrete mixing by categorical attribute (ci -label: color, gender, ethnicity). How much more often do
attributes match across edges than expected at random? Assortativity coefficient:

C = Q

Qmax
=

∑
ij

(
Aij − kikj

2m

)
δ(ci, cj)

2m−
∑

ij
kikj

2m δ(ci, cj)

22

Mixing by scalar properties, scalar value attribute (age, income, number of friends). Correlation of values
across edges. Assortativity coefficient:

r = cov

var
=

∑
ij

(
Aij − kikj

2m xixj

)
∑

ij(kiδij − kikj

2m)xixj

Your code here
g <- read.graph(file = 'Caltech.gml', format = 'gml')
assortativity.nominal(graph = g, types = V(g)$dorm+1, directed = F)

[1] 0.3491531

Basic network analysis pipeline

The basic pipeline for exploratory graph analysis consists of:

Loading

See Class 1.

Cleaning

After loading graph with all necessary attributes, it is often recommended to:

• delete empty nodes:

g = delete.vertices(g, degree(g) == 0)

• delete self-cycles and multiple edges - to make graph simple. simplify does all the work; some
parameters could be tuned:

simplify(g)

IGRAPH U--- 769 16656 --
+ attr: id (v/n), status (v/n), gender (v/n), magor (v/n),
sndmagor (v/n), dorm (v/n), year (v/n), school (v/n)

is.simple(simplify(g, remove.multiple=FALSE))

Obtaining main characteristics

See Classes 2-4.

Clustering

See Class 5.

Visualization

See previous section + Classes 1, 4.

23

	Graph cores
	Dyads and triads
	Motifs
	Visualisation
	Mixing patterns
	Assortative Mixing
	Assortativity measures
	Basic network analysis pipeline

