
Magolego SNA - Community Detection

Contents

Cohesive subgraphs . 1

Community detection . 6

library('igraph')

TO SAVE YOUR TIME, PLEASE START DOWNLOADING THIS NETWORK RIGHT
NOW

Cohesive subgraphs

Graph cliques

Graph clique is a subset of vertices of a graph such that every two vertices in the clique are adjacent.

How many cliques can you see on this graph?

plot(graph.famous("bull"))

1
2

3

4

5

1

https://www.cs.upc.edu/~csn/lab/wikipedia.gml

There was a couple of definitions about the cliques in graph on the lecture.
A maximum clique is a clique that cannot be extended by including one more adjacent vertex (not included
in larger one). Can you name maximum cliques in the given graph?
A maximal clique is a clique of the largest possible size in a given graph.
And, finally, graph clique number is the size of the maximum clique. Bull graph’s clique number is 3.
maximal.cliques returns lists of vertices, that form a maximum graph. Let’s see maximum cliques for a
bull graph:

maximal.cliques(graph.famous("bull"))

[[1]]
[1] 4 2
##
[[2]]
[1] 5 3
##
[[3]]
[1] 1 2 3

Let’s demonstrate some useful functions for finding cliques. Our graph today is again Zachary’s Karate Club
graph:

g = graph.famous("Zachary")
plot(g)

1

2

3

4

5 6

7

8

9

10

11

12

13

14

1516

17

18

19

2021
22

23

24

25
26

27

28

29
30

31

32

33
34

2

We can define sizes of maximal cliques we interested in:

maximal.cliques(g, min = 4, max = 5) # maximal cliques of sizes 4 and 5

[[1]]
[1] 24 34 33 30
##
[[2]]
[1] 34 9 33 31
##
[[3]]
[1] 2 1 4 3 8
##
[[4]]
[1] 2 1 4 3 14

maximal.cliques returns lists of vertices - maximal cliques. clique.number returns graph’s clique number.

Let’s find and show maximal cliques for Zachary Carate Club graph: lrg = largest.cliques(g) returns
ids of nodes - largest cliques

largest = largest.cliques(g)

op = par(mfrow = c(1,2))

labels = rep(0, vcount(g))

labels[largest[[1]]] = 2
plot(g, vertex.color = labels)
labels = rep(0, vcount(g))
labels[largest[[2]]] = 2
plot(g, vertex.color = labels)

3

1

2
34

5
6 7

8
9

10
11

12
13

14

15

16

17

18

19
20

21
22

232425
26

2728

29

30
3132 3334

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

25 26

27

28
29

30

31

32

33
34

par(op)

k-core

k-core is a maximal subset of vertices such that each is connected to at least k others in the subset.

R has a function wich calculates the coreness for each vertex. The coreness of a vertex is k if it belongs to
the k-core but not to the (k+1)-core.

Let's make some graph
z<-graph.empty(n=11, directed = FALSE)
z <- add.edges(z,c(1,2, 1,3, 1,4, 1,6, 1,5, 2,3, 2,4, 3,10, 3,11, 3,8, 3,4, 4,8, 4,7, 8,9, 10,11))
plot(z)

4

1

2
3

4
5

67

89

1011

Now we find maximum k-core and pick out it on graph

coreness <- graph.coreness(z)
max_cor <- max(coreness)
max_cor

[1] 3

color_bar <- heat.colors(max_cor)
plot(z, vertex.color = color_bar[coreness])

5

1

2

3

4

5

6

7

8

9

10
11

Community detection

The list of community detection algorithms in igraph

• edge.betweenness.community [Newman and Girvan, 2004]
• fastgreedy.community [Clauset et al., 2004] (modularity optimization method)
• label.propagation.community [Raghavan et al., 2007]
• leading.eigenvector.community [Newman, 2006]
• multilevel.community [Blondel et al., 2008] (the Louvain method)
• optimal.community [Brandes et al., 2008]
• spinglass.community [Reichardt and Bornholdt, 2006]
• walktrap.community [Pons and Latapy, 2005]
• infomap.community [Rosvall and Bergstrom, 2008]

Newman-Girvan Edge-Betweenness

Edge betweenness Edge betweenness is equal to the number of shortest paths from all vertices to all
others that pass through that edge.

g<-graph.empty(n=6, directed = FALSE)
g <- add.edges(g,c(1,2, 2,3, 1,3, 2,4, 4,5, 4,6, 5,6))
plot(g)

6

1

2

3

4

5

6

betw <- edge.betweenness(g)
#E(g)
#betw

The algorithm The Newman-Girvan algorithm detects communities by progressively removing edges
from the original network. The Girvan-Newman algorithm focuses on edges that are most likely “between”
communities.

Algorithm:

• Step 1: the betweenness of all existing edges in the network is calculated first.

• Step 2: the edge with the highest betweenness is removed.

• Step 3: the betweenness of all edges affected by the removal is recalculated.

• Step 4: steps 2 and 3 are repeated until no edges remain.

The best partition is selected based on modularity.

There is edge.betweenness.community function in R

g <- graph.famous("Zachary")
eb <- edge.betweenness.community(g)
plot(eb, g)

7

http://www.inside-r.org/packages/cran/igraph/docs/edge.betweenness.community

1 2

3

4

5
6 7

8 9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26
27

2829

30

31

32
3334

A bit more hand-made way
color_map = c("grey","blue","black","yellow","red","green")
membership = cutat(eb, no = 4)
membership = eb$membership
plot(g, vertex.color = eb$membership)

Also you can obtain dendrogram:

dendPlot(eb, mode="hclust", rect = 5)

8

11 5 17 7 6 12 13 18 20 22 8 14 4 2 1 10 34 33 30 24 31 9 23 21 19 16 15 27 32 26 25 28 29 3

0
5

10
15

20
25

30

Optionally you can run this
dend <- as.dendrogram(eb)
plot(dend)

Greedy Modularity maximization

Alternatively to the previous method, this one is agglomerative. Intially consider a network s.t. * There is no
edges * All clusters consist of a single vertex

Iteratively add an edge that delivers maximum modularity gain and merge correspondent communitues.

g <- graph.famous(name = "Zachary")
mm <- fastgreedy.community(g)

plot(rev(mm$modularity), xlab = 'Number of clusters', ylab = 'Modularity value')

9

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

Number of clusters

M
od

ul
ar

ity
 v

al
ue

which.max(rev(mm$modularity))

[1] 3

plot(mm, g)

10

1

2
3

4

5

6

7

8

9

10

1112 13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

3334

Label propagation

Label propagation algorithm consists of four steps:

• Step 1: Initialize labels
• Step 2: Randomize node ordering
• Step 3: For every node replace its label with occurring with the highest frequency among neighbors
• Step 4: Repeat steps 2-3 until every node will have a label that the maximum number of its neighbors

have

Warning! Due to step 2 you may get different results.

g <- graph.famous("Zachary")
lp <- label.propagation.community(g)
plot(lp, g)

11

1

23

4

5
6 7

8

9

10

11
1213

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

3334

Wikipedia example

Load wikipedia network in R and run some community detection algorithm. Extract article names in some
communities and check whether they make sense?

g <- read.graph('wikipedia.gml', format = 'gml')
g <- as.undirected(g)

The next lines of code might be usefull for interpretation

mm <- fastgreedy.community(g)
l <- V(g)$label[mm$membership == 2]
text <- paste(l, collapse = ' ')

#install.packages(c("tm", "SnowballC", "wordcloud", "RColorBrewer", "XML"))

library(wordcloud)

Loading required package: RColorBrewer

wordcloud(text, type="text",
lang="english", excludeWords = NULL,
textStemming = FALSE, colorPalette="Dark2",
max.words=200)

12

Loading required package: tm
Loading required package: NLP

data
advanced

application

router
st

or
ag

e

provider to
ne

radar
radio

point

scheme

transfer

logic

computer

equipment

routing

user

science

id
en

tif
ie

r

television
film

encoding

code identity

attack

telephone

operation
camera

bit generation

server

processing

delay

remote

signal

cipher

pulse
cryptography

multicast

file

voice

independent

codes

sony

display

program

communication

carrier

comparison

audio

random
microsoft

international

universal

communications

game
noise

frequency
differential

computing

frame

device

path

broadband

distributed

network

ericsson

networking

telecommunications

standards

portable

numbers

center

local
common

line

amateur

high

channel

free

satellite

pu
bl

ic
email

signature
services

band

language

modulation

power

effect

control

traffic

field

exchange

service

algorithm

manager

optical

standard

plan

siemens

encryption

gateway

wide

extended machine

bi
na

ry

cryptanalysis

cisco content

circuit

su
bs

cr
ib

er

automatic

web
coding

media

proxy

secure

cryptographic

ke
y

shutter

signaling
layer

windows

module

company

address
cr

yp
to

sy
st

em

test

hardware

image

open

loop
character

block

fiber

list

bus

tim
e

lo
ss

ie
ee

link

online

the

element

box

unit

call

relay

mail

codec

13

	Cohesive subgraphs
	Community detection

