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library('igraph')

TO SAVE YOUR TIME, PLEASE START DOWNLOADING THIS NETWORK RIGHT
NOW

Cohesive subgraphs
Graph cliques

Graph clique is a subset of vertices of a graph such that every two vertices in the clique are adjacent.

How many cliques can you see on this graph?

plot(graph.famous("bull"))


https://www.cs.upc.edu/~csn/lab/wikipedia.gml

There was a couple of definitions about the cliques in graph on the lecture.

A maximum clique is a clique that cannot be extended by including one more adjacent vertex (not included
in larger one). Can you name maximum cliques in the given graph?

A maximal clique is a clique of the largest possible size in a given graph.

And, finally, graph clique number is the size of the maximum clique. Bull graph’s clique number is 3.

maximal.cliques returns lists of vertices, that form a maximum graph. Let’s see maximum cliques for a
bull graph:

maximal.cliques(graph.famous("bull"))

##
##
##
#
##
##
##
##

[[1]1]
[1] 4 2

[[2]1]
[11 53

[[3]1]
(1] 123

Let’s demonstrate some useful functions for finding cliques. Our graph today is again Zachary’s Karate Club
graph:

g:

graph.famous ("Zachary")

plot(g)



We can define sizes of maximal cliques we interested in:

maximal.cliques(g, min = 4, max = 5) # mazimal cliques of sizes 4 and 5

## [[1]]

## [1] 24 34 33 30
##

## [[2]]

## [1] 34 9 33 31
##

## [[3]]

## [1]1 21 4 3 8
##

## [[4]]

## [11 2 1 4 3 14

maximal.cliques returns lists of vertices - maximal cliques. clique.number returns graph’s clique number.

Let’s find and show maximal cliques for Zachary Carate Club graph: 1rg = largest.cliques(g) returns
ids of nodes - largest cliques

largest = largest.cliques(g)
op = par(mfrow = c(1,2))

labels = rep(0, vcount(g))

labels[largest[[1]]] = 2
plot(g, vertex.color = labels)
labels = rep(0, vcount(g))
labels[largest[[2]]] = 2
plot(g, vertex.color = labels)
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par (op)

k-core

k-core is a maximal subset of vertices such that each is connected to at least k others in the subset.

R has a function wich calculates the coreness for each vertex. The coreness of a vertex is k if it belongs to
the k-core but not to the (k+1)-core.

# Let's make some graph

z<-graph.empty(n=11, directed = FALSE)

z <- add.edges(z,c(1,2, 1,3, 1,4, 1,6, 1,5, 2,3, 2,4, 3,10, 3,11, 3,8, 3,4, 4,8, 4,7, 8,9, 10,11))
plot(z)



Now we find maximum k-core and pick out it on graph
coreness <- graph.coreness(z)

max_cor <- max(coreness)
max_cor

## [1] 3

color_bar <- heat.colors(max_cor)
plot(z, vertex.color = color_bar[coreness])



Community detection
The list of community detection algorithms in igraph

o edge.betweenness.community [Newman and Girvan, 2004]

o fastgreedy.community [Clauset et al., 2004] (modularity optimization method)
o label.propagation.community [Raghavan et al., 2007]

o leading.eigenvector.community [Newman, 2006]

e multilevel.community [Blondel et al., 2008] (the Louvain method)

o optimal.community [Brandes et al., 2008]

o spinglass.community [Reichardt and Bornholdt, 2006]

o walktrap.community [Pons and Latapy, 2005]

o infomap.community [Rosvall and Bergstrom, 2008]

Newman-Girvan Edge-Betweenness

Edge betweenness Edge betweenness is equal to the number of shortest paths from all vertices to all
others that pass through that edge.

g<-graph.empty(n=6, directed = FALSE)
g <- add.edges(g,c(1,2, 2,3, 1,3, 2,4, 4,5, 4,6, 5,6))
plot(g)



betw <- edge.betweenness(g)
#E(g)
#betw

The algorithm The Newman-Girvan algorithm detects communities by progressively removing edges
from the original network. The Girvan-Newman algorithm focuses on edges that are most likely “between”
communities.

Algorithm:

e Step 1: the betweenness of all existing edges in the network is calculated first.
e Step 2: the edge with the highest betweenness is removed.
e Step 3: the betweenness of all edges affected by the removal is recalculated.

e Step 4: steps 2 and 3 are repeated until no edges remain.

The best partition is selected based on modularity.
There is edge.betweenness.community function in R
g <- graph.famous("Zachary")

eb <- edge.betweenness.community(g)
plot(eb, g)


http://www.inside-r.org/packages/cran/igraph/docs/edge.betweenness.community

## A bit more hand-made way

# color_map = c("grey”, "blue”, "black”, "yellow", "red"”, "green")
# membership = cutat(eb, no = 4)

# membership = eb$membership

# plot(g, vertex.color = eb$membership)

Also you can obtain dendrogram:

dendPlot (eb, mode="hclust", rect = 5)
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## Optionally you can run this
# dend <- as.dendrogram(eb)
# plot(dend)

Greedy Modularity maximization

Alternatively to the previous method, this one is agglomerative. Intially consider a network s.t. * There is no
edges * All clusters consist of a single vertex

Tteratively add an edge that delivers maximum modularity gain and merge correspondent communitues.

g <- graph.famous(name = "Zachary")
mm <- fastgreedy.community(g)

plot(rev(mm$modularity), xlab = 'Number of clusters', ylab = 'Modularity value')
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which.max (rev(mm$modularity))

## [1] 3

plot(mm, g)

Number of clusters

10



Label propagation

Label propagation algorithm consists of four steps:

e Step 1: Initialize labels
e Step 2: Randomize node ordering
e Step 3: For every node replace its label with occurring with the highest frequency among neighbors

e Step 4: Repeat steps 2-3 until every node will have a label that the maximum number of its neighbors
have

Warning! Due to step 2 you may get different results.
g <- graph.famous("Zachary")

lp <- label.propagation.community(g)
plot(1lp, g
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Wikipedia example

Load wikipedia network in R and run some community detection algorithm. Extract article names in some
communities and check whether they make sense?

g <- read.graph('wikipedia.gml', format = 'gml')
g <- as.undirected(g)

The next lines of code might be usefull for interpretation
mm <- fastgreedy.community(g)

1 <- V(g)$label [mm$membership == 2]

text <- paste(l, collapse = ' ')

#install.packages(c("tm", "SnowballC", "wordcloud", "RColorBrewer", "XML"))

library(wordcloud)

## Loading required package: RColorBrewer

wordcloud(text, type="text",
lang="english", excludeWords = NULL,
textStemming = FALSE, colorPalette="Dark2",
max.words=200)

12



## Loading required package: tm
## Loading required package: NLP
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