Magolego SNA - Lab 6

Contents
MotifS e e e e 1
Visualisation e e 3
Assortative Mixing L e 17
Basic network analysis pipeline L 17
Motifs

Motifs are often defined as recurrent and statistically significant sub-graphs or patterns. Here, we consider
motifs as sub-graphs of a given graph, which are isomorphic to defined sample.

Here is our old beloved friend:
library('igraph')

g = graph.famous("Zachary")
Let’s define a simple sample motif:

sample = graph(c(c(1,2), c(2,3)))
plot (sample)

Now let’s calculate, if it is often in our graph:
isoclass_num = graph.isoclass(sample) # defining number of corresponding isoclass

motifs3 = graph.motifs(g, size = 3)
motifs3[isoclass_num] # returns number of motifs

[1] 45

Due to high computational time (isomorphism checks), graph.motifs are implemented for graps of sizes 3
and 4 only. However, we can easy check numbers for all motifs of size 4 to find more frequent patterns:

motifs4 = graph.motifs(g, size = 4)

The most frequent pattern is fifth. Let’s draw it.

plot(graph.isocreate(size=4, number=5))

Not what we’re looking for.. Second most frequent (seventh):

plot(graph.isocreate(size=3, number=7))

That is certainly better.

Visualisation

There are currently three different functions in the igraph package which can draw graph in various ways:

e plot.igraph does simple non-interactive 2D plotting to R devices. Actually it is an implementation of
the plot generic function, so you can write plot(graph) instead of plot.igraph(graph). As it used the
standard R devices it supports every output format for which R has an output device. The list is quite
impressing: PostScript, PDF files, XFig files, SVG files, JPG, PNG and of course you can plot to the
screen as well using the default devices, or the good-looking anti-aliased Cairo device. See plot.igraph
for some more information.

e tkplot does interactive 2D plotting using the tcltk package. It can only handle graphs of moderate
size, a thousend vertices is probably already too many. Some parameters of the plotted graph can be
changed interactively after issuing the tkplot command: the position, color and size of the vertices and
the color and width of the edges. See tkplot for details.

e rglplot is an experimental function to draw graphs in 3D using OpenGL. See rglplot for some more
information.

Let’s draw a graph-ring using different three methods.

library(igraph)
library(rgl)

http://igraph.org/r/doc/plot.graph.html
http://igraph.org/r/doc/tkplot.html
http://igraph.org/r/doc/rglplot.html

g <- graph.ring(10)
g$layout <- layout.circle
plot(g)

#doesn't work in R Markdown
tkplot(g)

Loading required package: tcltk
[1]1 1

rglplot(g)

Layout

Either a function or a numeric matrix. It specifies how the vertices will be placed on the plot.
Let’s demonstrate how it works on some graph. For example graph which based on barabashi model.

g <- barabasi.game(50)

e layout.auto - tries to choose an appropriate layout function for the supplied graph, and uses that to
generate the layout.

plot(g, layout=layout.auto, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

&9
20 43
y e W
4136 40 8 & 3025
21 33 A 3%5
6 @ 17
46 S (2 4
26 49°¢
g 16 %90 & 4431 é3
S8 p 2 8 430
14 3739 89°
é2

e layout.random - simply places the vertices randomly on a square.

plot(g, layout=layout.random, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

8. 6 38 394
12

6 128 1@1 46 20533
118 g0t gt

¢5
5
68 344 1038
¢0 353-2 14 478426
43
2 622 296

e layout.circle - places the vertices on a unit circle equidistantly.

plot(g, layout=layout.circle, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

2 5
¢3 é
4 3
&5 2
86 d
ér 90
2289 489

$0 g%

o layout.sphere - places the vertices (approximately) uniformly on the surface of a sphere, this is thus

a 3d layout.

plot(g, layout=layout.sphere, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

262 131
283 087 .18,

246
1355 ,%8

é é6

e layout.fruchterman.reingold uses a force-based algorithm proposed by Fruchterman and Reingold.

plot(g, layout=layout.fruchterman.reingold, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

3084 3739
29 i5 92 44 42

45 50
g +46 3%
3 By
2l
11ee 49 98 53 36
2 é1
42 96-S {724 & 4
2540 ¢/
2789 324440 44 9
s g, D 3

43

e layout.kamada.kawai is another force based algorithm.

plot(g, layout=layout.kamada.kawai, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

@3 By 39
2 44 57 78 0
T AT gr 848

2
¢5 6 403 o ¢8
8 6/ 4
0
471 271 25
43 42

e layout.spring is a spring embedder algorithm.

plot(g, layout=layout.spring, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

10

&0

43 950 4u1
é3 33 @292 26
dAgy é9
22 & s ¥, 45 3@
35¢8 /4634
&0 10 49
66 %> 721
341

e layout.fruchterman.reingold.grid is similar to layout.fruchterman.reingold but repelling force is
calculated only between vertices that are closer to each other than a limit, so it is faster.

plot(g, layout=layout.fruchterman.reingold.grid, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

11

¢2 40 b
10 d S 8 b 41
35, 24 ¢
é5 - 36
32 42,7 % 43
137418 ®° 49\ ¢6 %25
20 i 8 31
9 34, 357175028
30 ¢4
29 % 32 37
49 14
82

e layout.lgl is for large connected graphs, it is similar to the layout generator of the Large Graph
Layout software http://lgl.sourceforge.net/.

plot(g, layout=layout.lgl, vertex.size=4,
vertex.label.dist=0.5, vertex.color="red", edge.arrow.size=0.5)

12

http://lgl.sourceforge.net/
http://lgl.sourceforge.net/

e layout.

, s 1520 37
o
317> 3% g6 28 36

graphopt is a port of the graphopt layout algorithm by Michael Schmuhl. graphopt version

0.4.1 was rewritten in C and the support for layers was removed (might be added later) and a code was
a bit reorganized to avoid some unneccessary steps is the node charge (see below) is zero.

e layout.

e layout.
limits.

e layout.

e layout.

svd is a currently experimental layout function based on singular value decomposition.

norm normalizes a layout, it linearly transforms each coordinate separately to fit into the given

drl is another force-driven layout generator, it is suitable for quite large graphs.

reingold.tilford generates a tree-like layout, so it is mainly for tree.

Highlight components

Let’s make different color for each graph component
g <- erdos.renyi.game (100, 1/100)

1 <- layout.fruchterman.reingold(g)

op = par(mfrow = c(1,2))
plot(g, layout=1l, vertex.size=5, vertex.label=NA)

comps <- clusters(g)$membership
colbar <- rainbow(max(comps)+1)

13

V(g)$color <- colbar[comps+1]

plot(g, layout=1l, vertex.size=5, vertex.label=NA)

o ©° e ©°
0 °° ¢ %o 0 ® o %o
o.p ° o o ° o’ ° o o °
o °
O o © ° %0 e O °
o ¢ CI o ¢ o CI
o o o o o
o © o o 9 ° e ° e o o o
° o ° o ° 5 ° o
o ° o o-¢g o ° 4 o ® o-g
° Q o o] o 00 ° Q o ° o0
o Q o o ° e 0© 0
. &L oo o L9 %, . &L o. L9 9,
o®° ° o o © o®° o ° o o ©
o oo o © o o ° ° .. °
o o o o o
e ° o °] ° o °
© 0 oo Ogg4 o © 0 5o Ogg4 o
° o0 ° oo
© o0 % ® o0 %

Highlight communities in graph
Let’s make different color for each community

g <- graph.full(5) ¥%du) graph.full(5) %du% graph.full(5)
g <- add.edges(g, c(1,6, 1,11, 6,11))

op = par(mfrow = c(1,2))
plot(g, layout = layout.kamada.kawai)

com <- spinglass.community(g, spins=5)

V(g)$color <- com$membership+1

g <- set.graph.attribute(g, "layout", layout.kamada.kawai(g))
plot(g, vertex.label.dist=1.5)

14

par (op)

Trees Visualization

plot(graph.tree(50, 2))

15

We can use layout = layout.reingold.tilford to draw tree

plot(graph.tree(50, 2), vertex.size=3, vertex.label=NA, layout=layout.reingold.tilford)

16

o -] o o o o o =] 0O 060000O0O0CO

0000000000000 0000O0OO0

tkplot(graph.tree(50, 2, mode="undirected"), vertex.size=10,
vertex.color="green")

[1]1 2

Assortative Mixing
Assortative Mixing coefficient shows whether nodes with the same attribute values tend to form connections.

Download Caltech.gml (or Caltech.mat) friendship network. Inspect nodes attributes and compute assortativity
coeflicients with assortativity function

Your code here
g <- read.graph(file = 'Caltech.gml', format = 'gml')
assortativity.nominal (graph = g, types = V(g)$dorm+1, directed = F)

[1] 0.3491531

Basic network analysis pipeline

The basic pipeline for exploratory graph analysis consists of:

Loading

See Seminar 1.

17

https://www.hse.ru/data/2016/04/21/1130164692/Caltech.gml
https://www.hse.ru/data/2016/04/21/1130164294/Caltech36.mat

Cleaning
After loading graph with all necessary attributes, it is often recommended to:
e delete empty nodes:

g = delete.vertices(g, degree(g) == 0)

e delete self-cycles and multiple edges - to make graph simple. simplify does all the work; some
parameters could be tuned:

simplify(g)

IGRAPH U--- 769 16656 --
+ attr: id (v/n), status (v/n), gender (v/n), magor (v/m),
sndmagor (v/n), dorm (v/n), year (v/n), school (v/n)

is.simple(simplify(g, remove.multiple=FALSE))

Obtaining main characteristics

See Seminars 2, 4.

Clustering

See Seminar 5.

Visualization

See previous section + Seminars 1, 4.

18

	Motifs
	Visualisation
	Assortative Mixing
	Basic network analysis pipeline

