
Signals and systems class, HSE, Spring 2015. A. Ossadtchi, Ph.D.

Lecture 1 

Definition of signal

Signal is usually a measurable quantity reflecting the state of a system or a medium and tracking this 
state over some extended range of the carrier variable (time, space, etc....) . Signals usually carry 
information about a system or a medium.  The information can be naturally coded (sound pressure 
variation) or artificially coded (Morse code) into a signal. Certain manipulations and transformations 
are performed on signals in order to extract this (naturally or artificially) encoded information from the 
signal. 

Digital versus analog signals

Signals are defined on its carrier. The notion of carrier is similar to the notion of support variable for 
functions. Say, s(t) is a function s of t defined as dependence of s on variable t, called support (or 
independent) variable  Usually, we will consider the carrier to be time and the signals then reflect the 
evolution of some physical process over time. However, the role of carrier variable can be performed 
by coordinates in space (x,y,z) or by angular coordinate and etc.... 

In most natural life cases the carrier is thought of as a continuous quantity. If t is a continuous quantity 
then for any two arbitrarily close values of t, say  t1 and t3, we will be able to find another value t2 that 
is situated between those t1 and t3 values. The same can be said about the amplitude of such signals. 
Often, such signals having continuously varied amplitude and defined over the continuous carrier are 
called analog signals and the corresponding processing is referred to as analog processing. Strictly 
speaking,  analog signals should take on continuous (not discrete) values. Therefore, a signal taking 
values only from the set {0,1} can not be called analog signal even if it defined on a continuous carrier.
However, in the modern world most of the signal processing  is done using the digital computers. To be
able to process the analog signals they need to be input into the computer. This is done via analog to 
digital conversion process by devices called Analog-to-Digital Converters (ADCs). This operation 
performs discretization of signal amplitude and the carrier. Discretization of the carrier is called 
sampling and corresponds to reading off the signals values at the discrete moments of time (collecting 

samples).Usually, these time moments are regularly spaced so that t i+1−ti=
1
F s

 where F s is 

called sampling frequency or sampling rate. If the samples are taken every second then the sampling 
rate is 1 Hz, if the samples are taken every millisecond then F s=1000 Hz . Discretization of signals
amplitude is called quantization that allows the signals to be represented in the computers using binary 
code. Modern ADC converters use 24 bits to represent the amplitude of  the input signal. This means 
that signal peak-to-peak amplitude is said to belong to one of 224 levels, see the figure below. For 
most signals such quantization yields sufficiently fine grain and therefore the effects of signal 
amplitude quantization are significantly less of a concern than quantization of a carrier variable 
(sampling ). In what follows we will ignore signal amplitude quantization effects, although the 
concerns regarding the quantization  arise when dealing with high performance systems and result into 
the problems of stability of such systems.       



Basic discrete signals (sequences)

Discrete signals are often called sequences. The carrier for the discrete signal is a set ℤ  of all 
integer numbers {...-100,....-1, 0, 1, …., 10, 100,....}. In order to develop our intuition let's think of a 
carrier for discrete signals as of discrete moments of time when the samples of such a signal have been 
taken.  We will denote the carrier variable as n and to illustrate that we are dealing with discretized 
signals (or simply, sequences) we will use s[n] notation for the discrete signal or sequence. 

So, the simplest non-trivial (not containing all zeros) sequence is so called pulse sequence defined to 
have  zero values for all n but for n = 0  and δ[0]=1 .  Find this pulse signal in the figure below



The next simplest sequence is so called unit step sequence efined to be u[n] = 0 for all n<0 and to be 
u[n] = 1 for all n≥0 . 

Exercise 1.1
Draw the following sequences δ[n−5] , δ[n+5] , u [n−1] , u [n]−u [n−1] ,

∑k =−∞

n
δ[ k ]  for n∈[−3, 9]  

Any sequence  can be written as a scaled summation of time-shifted impulse sequences. To see this, 
accomplish the following Exercise 1.2. 

Exercise 1.2
Draw the following sequence −1δ [n+1]+2δ[n ]+3δ[n−1]−3δ [n−3] for n∈[−3,9]  . 

Write a general expression for a sequence whose values are zero for all n<0 and for  n≥0  are given
by coefficients an . You can combine u[n] and δ[n ] sequences to accomplish this.

The impulse sequence δ[n ] will play the pivotal role in the discrete linear systems theory that we are
going to cover later in this class, so get used to it and make it your good simple friend! How? Play with
it! Also, don't forget about the unit step sequence.

Exercise 1.3
Draw the following sequence −u[n+1]+2n u[n ]+3u [n−1]−3u [n−3]  for n∈[−3,9]  

Another important sequence is the real exponential sequence defined as x [n]=Aα
n with base α

being a real number, i.e. α∈ℝ . Example of a real exponential sequence is shown in figure below. Is 
the base for this sequence greater or less than unity? 

In case, the  base α is a complex number, i.e. α=|α |e j ω0 and A=| A |e jϕ0 then  by simple 

Figure 1: Impulse sequence (a) and step sequence (b).  Copied from 
Oppenheim and Schafer's Discrete-time signal processing text, 1998 



substitution and using Euler's formula we get
x [n]=Aα

n
=| A | |α |n cos(ω0 n+ϕ0)+ j | A ||α |nsin (ω0 n+ϕ0)

Exercise 1.4
Consider sequence  x [n]=| A ||α |n cos(ω0 n+ϕ0)+ j | A ||α |nsin (ω0 n+ϕ0) for A = 1.0 and

α=0.9 e j0.2π .What is ϕ0 ? What is ω0 ? Draw the real part of x[n] for n = 0,...10. Do the same 

for α=2e j0.2π . What is the role of |α | ?

For |α |=1.0 , we get x [n]=| A |e j(ω0 n+ϕ0 )=| A | cos(ω0 n+ϕ0)+ j | A | sin (ω0 n+ϕ0) and this 
sequence is called complex exponential sequence. The real part of the  complex exponential sequence 
reduces to the cosinusoidal sequence

x [n]=ℜ{| A | cos (ω0 n+ϕ0)+ j | A | sin(ω0 n+ϕ0)}=| A | cos (ω0 n+ϕ0) and the imaginary part is 
simply a sinusoidal sequence. 

We will make an extensive use of this complex exponential sequence when we study linear systems and
the fundamentals of transform theory and the discrete time Fourier transform in particular. The use of 
complex counterparts of the real-life real signals allows to represent the operation of shift in time (or 
any other carrier variable) as a simple multiplication by a complex number. This allows to efficiently 
solve the problems of finding the shifts that, say, maximize the power of the sum of the shifted signals. 
This problem often arises in a wide range of signal processing applications. So, again, make the 
complex exponential sequence your friend! How? Treat it with a simple script in Matlab that generates 
the values of such a sequence for given A , ω0 and ϕ0 and plots its real and imaginary parts. 
Use stem command of Matlab to plot and define j = sqrt(-1). You can either use the explicit formula via
sine and cosine or use the exp(j*w.*n) expression to get the samples of this sequence.

Figure 2:  Copied from Oppenheim and Schafer's Discrete-time 
signal processing text, 1998 



Interesting properties of the complex exponential sequence

Observe that x [n]=| A |e j(ω0 n+ϕ0 )=| A |e j ((ω0+2π k)n+ϕ0)=| A |e j (ω0 n+ϕ0)e2π k
=| A |e j(ω0 n+ϕ0 ) . This means that

the complex exponential sequence is indistinguishable for the frequency values whose difference is a 
multiple of 2π . So, when studying complex exponential sequence we will only need to consider the 
frequencies in the range of 2π , i.e. −π≤ω0≤π or 0≤ω0≤2π . 

What is the period of a complex exponential sequence x [n]=| A |e j(ω0 n+ϕ0 ) ? For the periodicity to 
happen we should have x [n]=x [n+N ] with N be strictly integer. Let us substitute this pair of 
arguments for the expression of the complex exponential sequence

x [n]=| A |e j(ω0 n+ϕ0 )=| A |e j (ω0 n+ω0 N +ϕ0 ) . Based on the observation stated in  the previous paragraph we
conclude that for the last equation to be true we should have ω0 N=2π k . So, we should find such 

smallest value of k that N=
2π k
ω0

is an integer and  only then call it period of  x[n].

In some cases, however, for the discrete cosine and sine sequences we will not be able to find the 
period at all. Consider x [n]=cos (n) with ω0=1 . Then,  for the periodicity we should have

N=2π k and N should be an integer. Clearly, since π is not a rational number (can not be 
represented as the ratio of natural numbers)  it is impossible to find such a k that would provide shift N 
to be an integer. Therefore, the sequence x [n]=cos (n) is not periodic! 

As we showed above the cosine sequences with frequencies ω0  and ω0+2π r for integer r are 
indistinguishable and sine sequences are in antiphase.  Consider a set of N sequences with frequencies

ωk=
2π

N
k . Clearly, the sequence with frequency ω0=

2π

N
0=0 and sequence with

ωN=
2π

N
N=2 π are identical as both cosine and sine values are the same for each n-th sample.

x0[n]=cos (0n)=1, xN [n]=cos (2π n)=1 and y0[n]=sin(0n )=0, yN [n ]=sin (2πn)=0 . This 
sequence is a constant sequence and does not oscillate at all. Let's continue going down the spectrum of

frequency values   The next frequency is ω1=
2π

N
1 and fantastically, the cosine and sine sequences 

with this frequency oscillate as fast as the sequences  with the corresponding frequency but on the side 

of the spectrum, i.e.  the sequence with frequency value ωN −1=
2π

N
(N−1)=2π−

2π

N
, as

x N −1[n ]=cos (2πn−
2 π

N
n)=cos(

2π

N
n) (because cos(x)  is a 2π periodic even function ) and

yN −1[n]=sin(2πn−
2π

N
n)=−sin (

2π

N
n) (because sin(x)  is a 2π periodic odd function ) . 

Therefore, the cosine sequences coincide exactly while the sine sequences are in antiphase. This 
property is used in designing efficient algorithms for Fourier analysis that we will address later in the 
course. Also, use this property in one of your homework problems.

Based on the above we should be careful when assigning physical meaning to high and low frequencies
of the discrete time sequences. The oscillation frequency of  discrete harmonic sequence with

ωk=
2π

N
k grows up to ω⌊N /2⌋  and then starts to slow down to become a flat sequence again for

ωN as it is shown in the figure below. 



Sequences as points in   N  -dimensional space

A sequence can be thought of as a vector of dimension N, with N being the length of the sequence.
Since a sequence is a vector it corresponds to a point in the N-dimensional space. Thinking of a 
sequence as of a vector allows to introduce the notions of collinear sequences, orthogonal sequences, 
projections of one sequence onto another.  We can also think of the angle between the pair of sequences
(or cosine of it) as the measure of similarity of the sequence shapes. This can be easily computed using 
the scalar product of normalized sequence. Indeed, if xT y=| x | | y | cos(∢[x , y ]) then

cos (∢[ x , y ])=
xT y

| x | | y |
= x̃T ỹ , where the tilde denotes corresponding unit-norm vectors. The norm of

the sequence to be used in this expression can be computed as | x |=√ xT x  and corresponds simply 
to the length of the vector representing this sequence in the N-dimensional space. 

The distance metric in this space can be purely Euclidean, or may depend on some properties of the 

Figure 3:  Copied from Oppenheim and Schafer's Discrete-time signal processing text, 1998 



sequences and scale the space accordingly. We will return to the question of representing sequences as 
vectors in the high-dimensional hyperspace after a brief introduction to random processes. 

Exercise 1.5
Put together a simple Matlab program that generates a set of sequences with

xk [n]=cos(
2π k

N
n) for k =0:N,  and for n = 0:N-1 with N = 128.  Store sequence values in the 

rows of matrix X.  Then do this figure, subplot(1,2,1), imagesc(X), subplot(1,2,2), imagesc(X*X'). The
first figure shows colorcoded values of the rows of X. You can see how the oscillation frequency 
grows and the slows down. Now, think of rows of X as of vectors, explain what you see on the second 
figure. Below is the picture you should get and explain.

Figure 5: The result you should get if you properly accomplish exercise 1.5. Explain the second figure 
that plots color-coded matrix XX T
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Figure 4: Any sequence x with N samples  can be thought of as an N-dimensional  vector. 
Then, a sequence corresponds to a single point in the N-dimensional space.


