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Lecture 2

Basic random sequences (discrete time random processes)

In real world we are often dealing with signals that could be best characterized as random.  Random 
sequence is NOT a set of numbers listed in some particular order. Random sequence is a concept, a 
law that prescribes how to generate a realization of this random sequence. A realization is a set of 
numbers, no longer random as we already know this set of  values! This should be crystal clear! Read it
several times and try to understand what I mean here! 

Sometimes, the law for generating a realization is genuinely discrete. Sometimes, however, the 
sequences we are dealing with are, in fact, sampled (discretized) realizations of continuous time 
random process.  To formalize the concept of a random process, consider a set of outcomes Ω .When
dealing with random number we used to associate each element of this space with a particular 
realization of a random variable. For  example, for a dice,  Ω has six outcomes each being (or 
corresponding to) a face of the dice. Each face has some symbol, or number written on it that is getting 
assigned to the a value that the random variable takes at a particular realization.

Random variable is a rule X (ω) , ω∈Ω that maps the space of experimental outcomes Ω to the 
set of numbers. In case of the example with the dice, realization of a random variable is this number 
written on the face corresponding to the randomly picked element ω from the set of experimental 
outcomes Ω . 

Random process is a rule that maps a set of experimental outcomes to a set of functions. Experimental
outcome ωk is mapped to function X ( t ,ωk ) of time (or any other carrier (independent) variable) 
that is called  a realization of random process.  When using discrete time signal processing, we will be 
dealing with random sequences x [n]=X ( tn ,ω) where t n is a set of time instances at which we 
register the values of this random process. Again, a random process is usually thought of as a function 
of time, but it can equally well be a function of other independent (carrier) variable(s), such as, for 
instance,  spatial coordinates. 

A random process is basically a giant family of functions indexed by experimental outcome variable
ω  This family of functions is called an ensemble.  Note that we used word “rule” in the definition 

of the random process. We did this in order to spare the word “function” as we needed it further in the 
definition.

Consider an example. A random process that is called sinusoid with random phase. In the discrete time 
case it is given by the following function  x [n]=sin(2π f n+ϕ(ω)) . Here, we can see that phase 
shift   ϕ(ω) is a random variable, its distribution is given, usually, for this signal model ϕ(ω)  is 
supposed to be uniformly distributed in the [0,2π ] interval. To generate a realization of this process,
we sample random variable ϕ(ω)  and obtain, say, ϕ(ωi)=π/3 , then the realization of this 
discrete time random process is simply x [n]=sin(2π f n+π/3) that is no longer random and looks 
like a shifted sinusoid, shifted by the value that is a realization of the random variable ϕ(ω) . If we 
sample ϕ(ω) N times, we will obtain the ensemble of N realizations that can be used to compute the 
estimates of statistical characteristics of the random process. 



Fixing time moment, we get x [n]=X ( tn ,ω) is simply a random variable. The best we can do to 
characterize a random variable is to specify its probability density function (pdf).  The best we can do 
to characterize a random process is to specify the joint pdf of the random variables for every value of

t n .  The bottom panel of figure 1  shows two marginal distributions corresponding to the two 
different moments in time. To plot the histogram, we fixed the time slice index and took values of the 
random process corresponding to the 200 realizations of the random process at this particular time 
index. Importantly, specifying these marginal distributions apparently does not uniquely specify the 
sinusoid with random phase random process, as specifying marginal distributions and not specifying 
“connection” between the time slices does not allow to constrain the dynamical properties of the 

Figure 1: The best we can do to characterize a random process is to specify the joint pdf of the 
random variables for every value of t n .  The bottom panel of figure  shows two marginal 
distributions corresponding to the two different moments in time. To plot the histograms, we 
fixed the time slice index and took values of the random process corresponding to the 200 
realizations of the random process at this particular time index. Importantly, specifying these 
marginal distributions apparently does not uniquely specify the sinusoid with random phase 
random process, as specifying marginal distributions and not specifying “connection” between 
the time slices does not allow to specify the dynamical properties of the process, i.e. describe its 
smoothness and etc. To do so using the pdf approach we need to specify the joint pdf of values of 
the random process for all time slices  In other words we need to specify a full blown 
multivariate pdf P ([ x1, x2,. .. x N ]) if we are talking about the realizations with size of N 
samples. 



process, i.e. describe its smoothness and etc. To do so using the pdf approach we need to specify the 
joint pdf of values of the random process for all time slices.  In other words we need to specify a full 
blown multivariate pdf (that in general may be a function of time)

p ([ x1, x2,. .. x N ])=p ([ x1, x2,. ..x N ] ,t 1, t 2,. .. , tN ) if we are talking about the realizations with size of N 
time samples.  It is only for the white noise process whose time samples  are independent  that the joint 
distribution can be represented as the product of distributions i.e.

p ([ x1, x2,. .. x N ])=p (x1, t 1) p( x2, t 2) ... p( xN ,t N) . In other cases the joint distribution is the product of 
conditional distributions reflecting the fact that the process values at different time slices are not 
independent. This means that most processes have some sort of temporal smoothness that contrasts 
them from the white noise process (sequence of independent identically distributed (iid) random 
variables) that does not have any temporal structure and  whose samples are independent.   

Consider this almost trivial example. The triviality of this example lies in considering a realization of 
the random process containing only N = 2 samples and is dictated by our limitations to visualize higher 
than a 3D surface. Let this process be sinusoid with random phase process.

x [n]=sin(2π f n+ϕ(ω))  . Take n = [0,1] and calculate 2000 realizations of this random process. 
We will thus obtain a [2000 x 2] matrix with each row being a realization of the random variable. 

The top panel of figure 2 shows the estimated histogram (approximation of the joint pdf
p (x1, x2, t 1, t2) ) of the random process for N = 2 samples. Each realization (combination of x[1], 

x[2]) have different probabilities to occur as a result of sampling the experimental space. The left plot 
on the bottom panel shows colorcoded histogram (same as on the top panel) and shows two realizations
of the random process. We can see that different realization have different probability as can be judged 
by the brightness of the corresponding element of the colorcoded histogram. 



Describing random process with moments

Clearly, in general case specifying the distribution for longer realizations appears to be not really 
feasible. To alleviate this problem we can use time-dependent moments to describe statistical properties
of the random process. Also, it is useful to know that the ubiquitous Gaussian distribution is completely
defined by its first and second moments. Indeed, 

 The k-th moment of the random process is a function of time (or other carrier) is defined as the 
following integral

mk (t )=E { X k (t )}=∫
−∞

∞

xk p (x , t)dx . 

The first moment μ(t)=m1( t) of a random process is called mean.  There also exist so called central
moments defined similarly but using the random process with subtracted mean 

m̊k (t)=E {( X (t )−μ(t ))k }=∫
−∞

∞

(x−μ(t))k p (x , t)dx

The most prominent central moment is the second order moment called  variance.  

Figure 2: The top panel shows estimated histogram (approximation of the joint pdf) of the random 
process for N = 2 samples. Each combination of x[1], x[2] have different probabilities to be realized 
during the sampling of the experimental space. The left plot on the bottom panel shows colorcoded 
histogram (same as on the top panel) and shows two realizations of the random process. We can see 
that different realization have different probability as can be judged by the brightness of the 
corresponding element of the colorcoded histogram. 
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Note, that for each moment of time, the probability distribution p (x ,t )  may, in general, be 
different. This is not the case, however, for  the sinusoid with random phase process as we can see from
the histograms in figure 1 that are the approximations of the distributions for the two different time 
moments.  The same can be seen from the actual expression of the  process

x [n]=sin(2π f n+ϕ(ω)) in which random variable ϕ(ω) is independent of time index n. 

Also, note that for discrete time processes we replace t with n, corresponding to the n-th moment of 
time m̊k [n]=m̊k ( tn)=E {(X (t )−μ(t n))

k }=∫
−∞

∞

(x−μ(t n))
k p(x , tn)dx

The  equations presented here are formal definitions of the moment and require knowledge of the pdf to
be computed. The obtained values are not random.  In real life we need to estimate the moments of the 
random process based on the ensemble of realizations of the random process. Unlike the actual 
moments, the obtained estimates are the functions of the random numbers and therefore are random 
themselves. 

Imaging that we have collected M realizations xm[n ]  of a random process x . Each realization 
has duration of N time points (samples).  To compute the estimate of the first moment, or in other 
words average, we just sum all of these M realizations and divide the sum by M. In other words

μ̂x [n]=
1
M ∑m=1

M
xm[n ] , so we get the sequence μ̂x [n] that is an estimate of the first moment of 

the random process x. The hat on the top of the letter μ   denotes that this is an estimate an not the 
exact value of the first moment. 

Consider a set of evoked responses recorded during an EEG experiment. At each trial (or epoch) each 
EEG channel records a realization of the random process, called evoked response. When we perform 
the operation of averaging these evoked responses and obtain time varying average exhibiting some 
peaks and deeps we, in fact, estimate the first moment of the evoked response random process. In other 
words, the averaged evoked response is exactly the first moment of  evoked response random process. 
Note that in this case, the original random process is a continuous process that we sampled in 
accordance with the sampling rate settings of our amplifier (usually 500 samples per second) and thus 
obtained the set of sequences – discretized in time realizations of this random process.  The example of 
EEG and at each trial (epoch). 

To estimate the variance of the random process we can use a similar averaging procedure i.e.

σ̂ x
2
[n]=

1
M −1∑m

M
( xm[n]−μ̂[n ])

2  . Note that this estimate is using the estimate of the mean and 

then is simply computing the average square of the deviation from the mean.  

None of these two statistics tell us about the relation between the random variables being samples of 
the random process with different time indices, i.e. n1  and n2 . To characterize this relation we 
will use so called autocorrelation function defined as

R[n1, n2]=∫−∞

∞

∫
−∞

∞

( x1−μ[n1])(x2−μ[n2]) p (x1, x2, n1, n2)dx1dx 2

Each element of this autocorrelation function is simply a correlation between the values of the random 
process at the two different time moments. 



We can estimate it from the data using the following expression

R̂[n1, n2]=
1

M −1∑m=1

M
( xm[n1]−μ̂ [n1])(xm [n2]−μ̂ [n2])

As you can the estimation expression is simply estimating the average value of the product of centered 
values of the process. Also note that the autocorrelation function is in general a function of  two 
variables, two indices n1  and n2 .

Examples of analytic calculation of the moments

Consider the sinusoid with random phase process x [n]=sin(ω0 n+ϕ(ω)) . Now, as prescribed by 
the definition lets write

μ x[n ]=∫0

2π

sin(ω0 n+ϕ)
1

2π
d ϕ=

1
2 π

∫0

2π

sin (ω0 n+ϕ)d ϕ

=
−1
2π

cos (ω0 n+ϕ) |0
2π

=
−1
2π

(cos (ω0 n+2π)−cos (ω0 n+0))=0

The difference of cosines appears to be equal to zero because the arguments are 2π apart. 
Importantly, note that the mean of this process is not a function of time. This results should be expected
by you based on examining the two distributions shown in figure 1. You can see that the distributions, 
that are the approximations of the pdf, are symmetric around zero.  

Let's compute the variance remembering that μx [n]=0 ∀n .

 
σ x

2
[n]=∫0

2π

sin2
(ω0 n+ϕ)

1
2π

d ϕ=
1

2π
∫0

2π 1−cos (2ω0 n+2ϕ)

2
d ϕ

=
1

4π
ϕ |0

2π
−

1
8π

sin(2ω0 n+2ϕ) |0
2π

=
1
2

Note that the second term in the final summation vanishes.  Also, note that similarly to the mean of this 
process, the variance does not depend on the time index value and is identical for all time moments.

Now, let's compute the autocorrelation function  for x [n]=sin(ω0 n+ϕ(ω))

R x [n1, n2]=∫0

2π

sin(ω0 n1+ϕ)sin (ω0 n2+ϕ)
1

2π
d ϕ=

1
4π

∫0

2π

cos (ω0(n1−n2))d ϕ+

+
1

4π
∫0

2π

cos(ω0(n1+n2)+2ϕ)d ϕ=
1

4π
cos (ω0(n1−n2))ϕ |0

2π
=

1
2

cos (ω0(n1−n2))

As we can see the autocorrelation for this process does not depend on the absolute values of the time 
indices but only on the distance between them d =n1−n2 . This value d is usually called lag. Figure
3 shows the autocorrelation for a range of lags. Note that the value of the autocorrelation function  
corresponding to lag d = 0 is exactly the variance of the random process, i.e. σ x=C [0]=1/2 ; The 
same can be concluded from analysis  of the definition for autocorrelation function by substituting

n1=n2=n .   What else does the autocorrelation sequence tell us? For example, the periodicity of 
maxima with T = 10 samples tells us that if we know the value of some particular m-th sample for a 
realization at hands then the realization will exhibit exactly the same values for all samples with indices



m+kT. This is obvious since the process we have at hands is a sinusoid with random phases and is 
peridoci with period T = 10 samples. Very often, analysis of the autocorrelation sequence of some 
measured realization of a random process allows to reveal hidden regularities present in the data and 
not visible wih “bare eye”.

Exercise 1.1
Put together a simple Matlab program that plots autocorrelation sequence of

xk [n]=cos(
2π

20
n+ϕ(ω)) with uniformly distributed ϕ(ω) in -pi:pi range for the range of lags d 

=-40:40.

Exercise 1.2
Imaging that the autocorrelation sequence of a random process x[n] is given by

R x [d ]=ae−bd . Calculate the second moment for random variable y=x [ 4]− x [2] Put together a 

simple Matlab program that plots autocorrelation sequence of  xk [n]=cos(
2π

20
n) for the range of 

lags d =-40:40.

Stationary processes

Stationary process is an important class of processes that significanly simplify our life as researchers 
and data analysts.  A stationary random process is the random process whose joint probability density 
function does not change with time. This means, that the moments of any order, since they are 
dependent on the joint pdf, do not change with time.  This is a very strict characteristics. Softer 
characteristics involves requirement for the processes up to order 2 to be not dependent on time. In 
other words if the mean is constant over time and the autocorrelation sequence depends only on the 

Figure 3: Autocorrelation sequence of x [n]=sin(2π/10n+ϕ) discrete time
random process. 



difference of time indices then the process is called wide sense stationary (WSS).  Most of the time we 
will be dealing with WSS processes.

Ergodic processes

The strict definition of ergodicity is very very technical. However, since the ergodicity is a very 
important property that oftentimes implicitly assumed  by many signal processing algorithms, we will 
attempt to define it here. Consider the following situation. You have obtained a record of data. It could 
be, for example a record of resting state EEG. Having explored the data visually, you are see that the 
record is nice and clean. Now you want to calculate the mean, the variance and the autocorrelation 
sequence of your data. Theoretically, what you have in hands is just a single realization of the random 
process and in order to employ the general estimator you need to collect many more such realizations. 
One strategy that may come to you mind is to take you data record split in some significant number of 
segments and then use these segments as you realizations. Essentially, you are replacing the averaging 
over ensemble by averaging over time. To be able to legitimately do it the process at hands have to be 
ergodic.

Estimation of autocorrelation sequence from a realization of an ergodic process

A practical estimator of the autocorrelation sequence is shown in the figure 4. The corresponding 

expression is R̂[k ]=
1

N −k ∑i=k

N
x [i ] x [i−k ] .

Exercise 1.3
Write an expression and draw a diagram for calculating the k-th lag of the autocovariance sequence. 

Figure 4: Calculating the first lag of the autocorrelation function for an ergodic random process. The 
top sequence is shifted by 1 sample with respect to the bottom sequence. This automatically aligns the 
samples that are 1 time slice apart. Sample by sample multiplication (for all but two samples on both 
extremities  that do not have the pair) and calculating the average of this product results into the 
estimate of the first  lag of the autocorrelation function. For simplicity, this example assumes that te 
process is zero mean and therefore we used the original and not centered (mean subtracted) 
timeseries.


