Post's Functional Completeness Theorem

Definition: P, —is the set of all boolean functions. The system

of boolean functions {f1, f>, ..., fi, ... }from P, s
functionally complete if any boolean function can be
constructed from them.

Examples:

e P, —is functionally complete

* {X,x1 & x5, x1 V x5} - is functionally complete
* {0, 1} —is not complete
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Theorem 1. Given two systems of functions from P,:

F={fuf2.} (1)

G = {9192 -} (1)

If the system (l) is complete and every function from (I) can be
constructed by functions from (Il), then system (ll) is complete.

Proof: Let h —any function from P,. As () is complete, then

h = Clf1.f2 . ]
as every function from (I) can be constructed by functions from (ll):
f1 = C1l91.92 .. ]
f2 = G291, 92 - ]
.............................. then
Clfvf2 1 = ClC1191, 92, - |, C2l91, 92, - |, -] = 91,92 -]
e Or h=1(][g919> -]

g.e.d.
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Example: System B = {0,1,x4 - x5, X1 + X3} -is complete.

Theorem 2 (Zhegalkin). Every function from P, can be
presented as polynomial mod 2. It follows from the last
example.

Definition: T —subset from P. Set of all boolean functions
constructed from T —is called closed class of T and denotes as

[T].

Closed class features:

o [T]2T

+[[T]] = [T]

e|IfT{ T, then [T{] < [T;]
*[T1 UT,] 2 [T4] VU [T2]

Another definition of functional completeness: T is functional
complete, if [T] = P,.




Post's Functional Completeness Theorem

Important closed classes of functions
e T — class of all 0-preserving functions, such as f(0,...,0) = 0.
e T4 —class of all 1-preserving functions, such as f(1,...,1) = 1.
* S — class of self-dual functions, such as
f(x1, ... X)) = f(mXxq, ..., Xy)
* M - class of monotonic functions, such as :
{xll---'xn} = {ylr---»yn}r ifxi = JYi
if X, %0} < V.-, V0
o

then f(xq,...,xn) =< f(Y1 ) ¥n)
e L — class of linear functions, which can be presented as:

f(x4,...xX,) = ag + a1-X1 + ... + a,-x,; a;1 {0, 1}




Post's Functional Completeness Theorem

Lemmal

If function f(x4, ..., x,,) ¢ S (class of self-dual functions), then
from this function, substituting functions x and—x, we can get not
self-dual function of one variable, i.e. constant.

Proof:

As f¢S, then thereis a set (a4, ..., a,), such as

f(—la1, T —|an) = f(al, i an)

Consider functions ¢;(x) = x% (i=1,..,n).

Let ¢(x) = f(@1(x), ..., Pn(X)).

Then we have

9(0) = f(91(0), ..., 9,(0)) = f(04, ...,0%) = f(@y, ..., Ay) =
= f(ay, .., an) = f(1%,..1%) = f(@1(1), .., 9o (1)) = @(1).
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Lemma 2

If f(xq,...,x,) & M (class of monotonic functions), then it is
possible to get function —x from function f, substituting
constants 0 and 1 and function x.

Proof:

SetsA = (a4, ...,a;, ..,a,)and B = (a4, ...,a;, ..., ay)
are called neighboring by coordinate i.

Let us prove, that there is a pair of sets A and B, such as
f(4) > f(B).
*Since f#M, then there are sets A; and B4, such as

Ay < Byand f(Aq) > f(Bq).Ifsets A{and B are
neighboring, then lemma is proven.
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If sets are not neighboring, then sets are differentin ¢
coordinates (t > 1). Then between sets A; and B4 we can
insert (t — 1) sets, so that neighboring sets will be different in
one coordinate.

Then at least for one pair of neighboring sets (denote them
A and B), willbe f(A) > f(B).

Let A and B be neighboring by coordinate L.

Consider function @(x) = f(a4,...,a;_1, X, Aj11, ..., Ay):
¢0) = f(aq,...,a;-1,0,a;44,...,a,) = f(A) > f(B) =
o f(al, e, Aj_1, 1, aA;i+1, ...,an) = F(l)

Then: @(0) = 1,9(1) = 0,i.e.p(x) = —x.
Lemma is proven.
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Lemma 3

If f(x4,...,x,) ¢L (class of linear functions), then, substituting
constants 0 and 1 and functions x and—x, and may be applying —
to f, we can get function x; & x5 from f.

Proof:
Consider Zhigalkin’s polynomial for f:

f(x1,..,xn) = Q. .iXi, X

ls
(i1, 1s)
Since polynomial is non-linear, then it has a member with at least
two factors. Denote them x4 and x,. Then

= X1 X2f1(x3, ..., X)) + X1 f2(x3, ..., X)) + X2f3(x3, ..., X)) + fa(x3, ..., X,)
where, due to uniqueness of polynomial f1(x5,...,x,) # O.
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Let a3, ..., a,, be such f{(as3, ..., a,) = 1.

Then

P(x1,x2) = f(x1,%2,a3,...,a,) = XX + axq +
+px; +,

where a, B,y — constants 0 or 1.

Consider function Y (x{,x,) = @(x1 + B, x, +a) + aff +y

¢x1+B,x;+ta)t+taf +y
=(x1+tB)(x2ta)+talxy +p)+Px+a) +y+ap
TV = X1X2

Then Y (x4, x2) = x1&X>
Lemma is proven.
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Theorem (Post's Functional Completeness Theorem)

A system F of boolean functions is functionally complete if
and only if for each of the five defined classes Ty, T¢,S, M, L,
there is a member of F which does not belong to that class.

Proof:

Necessity: Let F is functional complete, i.e. [F] = P,.

Let us denote any of five classes as R and assume that Fl R.
Then, P, = [F]i [R] = R.

So, R = P,, thatis contradiction.

Necessity is proved.
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Sufficiency:
Let us assume, that F does not belong to any of five classes.

Then we can select subsystem | = { fi, fj, fr. f1.fn }

which consists of no more than five functions, and also does
not belong to any of five classes. These functions depend on
the variables x4, ..., x,,.

. Getting constants 0 and 1 from functions f;, f;, f k-
Consider function f; & T (O-preserving).
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Two cases are possible:

1. f;(1,...,1) = 1,then f;(x,...,x) = 1,

because f;(0,...,0) = 1and f;(1,..,1) = 1

second constant (0) can be got by f;:
fia,.,1)=1

2. f;(1,...,1) = 0,then f;(x,...,x) = —x,

because f;(0,...,0) = 1and f;(1,..,1) = 0

Consider function f ¢S. As we have—x, then we can get
constant according to Lemma 1.

Since we have—x, then we can get second constant.
So for both cases we can get constants 0 and 1.
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Il. Getting function —x from constants 0, 1 and function f,, .
It can be done according to Lemma 2.

lll. Getting function x; & x5, from constants 0, 1 and functions
—x and f;.

It can be done according to Lemma 3.

So we have constructed functions — x and x{ & x5 by
formulas under | and therefore under F.

Corollary 1

For every closed class of functions T from P,, if T P,, then
T is included at least in one of constructed classes.
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Definition
Class R of functions from P, is called precomplete class, if R

is not complete and for every function f (f € P2, f € R),
class R U {f} —is complete.

Corollary 2

In the Boolean algebra there are only five precomplete
classes:

To, T4, S, M,L.

Post's Functional Completeness Theorem provides not only
completeness criterion.

It allows (with Disjunctive normal form and Conjunctive
normal form) to find formula for every boolean function by
complete system functions.




