
Post's Functional Completeness Theorem
Definition: – is the set of all boolean functions. The system
of boolean functions { , , … , , … } from is
functionally complete if any boolean function can be
constructed from them.

Examples:
• – is functionally complete
• { , & , ∨ } - is functionally complete
• {0, 1} – is not complete



Post's Functional Completeness Theorem
Theorem 1. Given two systems of functions from := { , , … } (I)= { , , … } (II)
If the system (I) is complete and every function from (I) can be
constructed by functions from (II), then system (II) is complete.
Proof: Let – any function from . As (I) is complete, then= [ , , … ]
as every function from (I) can be constructed by functions from (II):= [ , , … ]= [ , , … ]

………………………… then[ , , … ] = [ [ , , … ], [ , , … ], … ] = [ , , … ]
• Or = [ , , … ]
q.e.d.
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Example: System = { , , · , + } - is complete.
Theorem 2 (Zhegalkin). Every function from can be
presented as polynomial mod 2. It follows from the last
example.
Definition: T – subset from . Set of all boolean functions
constructed from T – is called closed class of T and denotes as
[T].
Closed class features:
• [ ] ⊇
• =
• If  , then [ ]  [ ]
• ∪ ⊇ [ ] ∪ [ ]
Another definition of functional completeness: T is functional
complete, if [ ] = .
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Important closed classes of functions
• – class of all 0-preserving functions, such as ( , … , ) = .
• – class of all 1-preserving functions, such as ( , … , ) = .
• S – class of self-dual functions, such as( , … , ) = ¬ (¬ ,… ,¬ )
• M – class of monotonic functions, such as :{ , . . . , } ≤ { , . . . , }, if ≤

if { , . . . , } ≤ { , . . . , }
then ( , . . . , ) ≤ ( , … , )

• L – class of linear functions, which can be presented as:( , … , ) = + · + … + · ;  {0, 1}
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Lemma 1
If function ( , … , )  (class of self-dual functions), then
from this function, substituting functions and¬ , we can get not
self-dual function of one variable, i.e. constant.
Proof:
As  , then there is a set ( , … , ), such as(¬ ,… ,¬ ) = ( ,… , ).
Consider functions ( ) = ( = ,… , ).
Let = ( ,… , ).
Then we have= ,… , = ,… , = ,… , == ,… , = ,… = ,… , = ( ).
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Lemma 2
If ( , … , )  (class of monotonic functions), then it is
possible to get function¬ from function , substituting
constants 0 and 1 and function .
Proof:
Sets = ( ,… , , … , ) and = ( ,… ,¬ ,… , )
are called neighboring by coordinate .
Let us prove, that there is a pair of sets A and B, such as( ) > ( ).
• Since  , then there are sets and , such as≤ and ( ) > ( ). If sets and are
neighboring, then lemma is proven.
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If sets are not neighboring, then sets are different in
coordinates ( > ). Then between sets and we can
insert ( − ) sets, so that neighboring sets will be different in
one coordinate.
Then at least for one pair of neighboring sets (denote them

and ), will be ( ) > ( ).
Let and be neighboring by coordinate .
Consider function ( ) = ( ,… , , , , … , ):( ) = ( , … , , , , … , ) = ( ) > ( ) == ( ,… , , , , … , ) = ( )
Then: ( ) = , ( ) = , . . ( ) = ¬ .
Lemma is proven.
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Lemma 3
If ( , … , )  (class of linear functions), then,  substituting
constants 0 and 1 and functions and¬ , and may be applying ¬
to , we can get function & from .
Proof:
Consider Zhigalkin’s polynomial for f:( , … , ) = … …( ,…, )
Since polynomial is non-linear, then it has a member with at least
two factors. Denote them and . Then

… …( ,…, ) =
= ,… , + ,… , + ,… , + ( ,… , )

where, due to uniqueness of polynomial ( , … , ) ≠ .
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Let , … , be such ( , … , ) = .
Then , = , , , … , = + ++ + ,
where , , – constants 0 or 1.
Consider function , = + , + + ++ , + + += + + + + + + + ++ =
Then , = &
Lemma is proven.
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Theorem (Post's Functional Completeness Theorem)
A system of boolean functions is functionally complete if
and only if for each of the five defined classes , , , , ,
there is a member of which does not belong to that class.
Proof:
Necessity: Let is functional complete, i.e. [ ] = .
Let us denote any of five classes as and assume that  .
Then, = [ ][ ] = .
So, = , that is contradiction.
Necessity is proved.
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Sufficiency:
Let us assume, that F does not belong to any of five classes.
Then we can select subsystem = { , , , , },
which consists of no more than five functions, and also does
not belong to any of five classes. These functions depend on
the variables , … , .
I. Getting constants 0 and 1 from functions , , .
Consider function ∉ (0-preserving).
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Two cases are possible:
1. ( , … , ) = , then ( , … , ) = ,
because ( , … , ) = and ( , … , ) =
second constant (0) can be got by :, … , =. ( , … , ) = , then ( , … , ) = ¬ ,
because ( , … , ) = and ( , … , ) =
Consider function  . As we have¬ , then we can get
constant according to Lemma 1.
Since we have¬ , then we can get second constant.
So for both cases we can get constants 0 and 1.



Post's Functional Completeness Theorem

II. Getting function ¬ from constants 0, 1 and function .
It can be done according to Lemma 2.
III. Getting function & from constants 0, 1 and functions¬ and .
It can be done according to Lemma 3.
So we have constructed functions ¬ and & by
formulas under and therefore under .
Corollary 1
For every closed class of functions from ,  if , then

is included at least in one of constructed classes.
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Definition
Class of functions from is called precomplete class, if
is not complete and for every function ( ∈ , ∉ ),
class { } – is complete.
Corollary 2
In the Boolean algebra there are only five precomplete
classes: , , , , .
Post's Functional Completeness Theorem provides not only
completeness criterion.
It allows (with Disjunctive normal form and Conjunctive
normal form) to find formula for every boolean function by
complete system functions.


