Definition: P_2 – is the set of all boolean functions. The system of boolean functions { f_1 , f_2 , ..., f_i , ... } from P_2 is **functionally complete** if any boolean function can be constructed from them.

Examples:

- P₂ is functionally complete
- $\{\overline{x}, x_1 \& x_2, x_1 \lor x_2\}$ is functionally complete
- {0, 1} is not complete

Theorem 1. Given two systems of functions from **P**₂:

 $F = \{f_1, f_2, \dots\}$ (I) $G = \{g_1, g_2, \dots\}$ (II)

If the system (I) is complete and every function from (I) can be constructed by functions from (II), then system (II) is complete.

Proof: Let h – any function from P_2 . As (I) is complete, then $h = C[f_1, f_2, ...]$

as every function from (I) can be constructed by functions from (II):

$$f_{1} = C_{1}[g_{1}, g_{2}, \dots]$$

$$f_{2} = C_{2}[g_{1}, g_{2}, \dots]$$
then
$$C[f_{1}, f_{2}, \dots] = C[C_{1}[g_{1}, g_{2}, \dots], C_{2}[g_{1}, g_{2}, \dots], \dots] = ([g_{1}, g_{2}, \dots])$$
• Or
$$h = ([g_{1}, g_{2}, \dots])$$

q.e.d.

Example: System $B = \{0, 1, x_1 \cdot x_2, x_1 + x_2\}$ - is complete.

Theorem 2 (Zhegalkin). Every function from P_2 can be presented as polynomial mod 2. It follows from the last example.

Definition: $T - subset from P_2$. Set of all boolean functions constructed from T - is called **closed class** of T and denotes as [T].

Closed class features:

- $[T] \supseteq T$
- $\bullet \left[\left[T \right] \right] = \left[T \right]$
- If $T_1 \subseteq T_2$, then $[T_1] \subseteq [T_2]$
- $\bullet \left[T_1 \cup T_2 \right] \supseteq \left[T_1 \right] \cup \left[T_2 \right]$

Another definition of functional completeness: **T** is functional complete, if $[T] = P_2$.

Important closed classes of functions

• T_0 – class of all 0-preserving functions, such as f(0, ..., 0) = 0.

- T_1 class of all 1-preserving functions, such as f(1, ..., 1) = 1.
- S class of self-dual functions, such as

 $f(x_1, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n)$

• M – class of monotonic functions, such as :

 $\{x_1, \dots, x_n\} \le \{y_1, \dots, y_n\}, \text{ if } x_i \le y_i$ if $\{x_1, \dots, x_n\} \le \{y_1, \dots, y_n\}$ then $f(x_1, \dots, x_n) \le f(y_1, \dots, y_n)$

L – class of linear functions, which can be presented as:

 $f(x_1, ..., x_n) = a_0 + a_1 \cdot x_1 + ... + a_n \cdot x_n; a_i \ge \{0, 1\}$

Lemma 1

If function $f(x_1, ..., x_n) \notin S$ (class of self-dual functions), then from this function, substituting functions x and $\neg x$, we can get not self-dual function of one variable, i.e. constant.

Proof:

As $f \notin S$, then there is a set $(a_1, ..., a_n)$, such as $f(\neg a_1, ..., \neg a_n) = f(a_1, ..., a_n)$. Consider functions $\varphi_i(x) = x^{a_i}$ (i = 1, ..., n). Let $\varphi(x) = f(\varphi_1(x), ..., \varphi_n(x))$. Then we have $\varphi(0) = f(\varphi_1(0), ..., \varphi_n(0)) = f(0^{a_1}, ..., 0^{a_n}) = f(\overline{a_1}, ..., \overline{a_n}) =$

 $= f(a_1, ..., a_n) = f(1^{a_1}, ..., 1^{a_n}) = f(\varphi_1(1), ..., \varphi_n(1)) = \varphi(1).$

Lemma 2

If $f(x_1, ..., x_n) \notin M$ (class of monotonic functions), then it is possible to get function $\neg x$ from function f, substituting constants 0 and 1 and function x.

Proof:

Sets $A = (a_1, ..., a_i, ..., a_n)$ and $B = (a_1, ..., \neg a_i, ..., a_n)$ are called neighboring by coordinate *i*.

Let us prove, that there is a pair of sets A and B, such as f(A) > f(B).

• Since $f \notin M$, then there are sets A_1 and B_1 , such as $A_1 \leq B_1$ and $f(A_1) > f(B_1)$. If sets A_1 and B_1 are neighboring, then lemma is proven.

If sets are not neighboring, then sets are different in t coordinates (t > 1). Then between sets A_1 and B_1 we can insert (t - 1) sets, so that neighboring sets will be different in one coordinate.

Then at least for one pair of neighboring sets (denote them A and B), will be f(A) > f(B).

Let **A** and **B** be neighboring by coordinate *i*.

Consider function $\varphi(x) = f(a_1, ..., a_{i-1}, x, a_{i+1}, ..., a_n)$: $\varphi(0) = f(a_1, ..., a_{i-1}, 0, a_{i+1}, ..., a_n) = f(A) > f(B) =$ $= f(a_1, ..., a_{i-1}, 1, a_{i+1}, ..., a_n) = F(1)$

Then: $\varphi(0) = 1, \varphi(1) = 0, i.e. \varphi(x) = \neg x.$

Lemma is proven.

Lemma 3

If $f(x_1, ..., x_n) \notin L$ (class of linear functions), then, substituting constants 0 and 1 and functions x and $\neg x$, and may be applying \neg to f, we can get function $x_1 \& x_2$ from f.

Proof:

Consider Zhigalkin's polynomial for f:

$$f(x1,...,xn) = \sum_{(i_1,...,i_s)} a_{i_1...i_s} x_{i_1} ... x_{i_s}$$

Since polynomial is non-linear, then it has a member with at least two factors. Denote them x_1 and x_2 . Then

$$\sum_{(i_1,\ldots,i_s)}' a_{i_1\ldots i_s} x_{i_1} \ldots x_{i_s} =$$

 $= x_1 x_2 f_1(x_3, ..., x_n) + x_1 f_2(x_3, ..., x_n) + x_2 f_3(x_3, ..., x_n) + f_4(x_3, ..., x_n)$ where, due to uniqueness of polynomial $f_1(x_3, ..., x_n) \neq 0$.

Let $\alpha_3, \ldots, \alpha_n$ be such $f_1(\alpha_3, \ldots, \alpha_n) = 1$.

Then

 $\varphi(x_1, x_2) = f(x_1, x_2, a_3, \dots, a_n) = x_1 x_2 + a x_1 + \beta x_2 + \gamma,$

where $\boldsymbol{a}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ – constants **0** or **1**.

Consider function $\psi(x_1, x_2) = \varphi(x_1 + \beta, x_2 + \alpha) + \alpha\beta + \gamma$ $\varphi(x_1 + \beta, x_2 + \alpha) + \alpha\beta + \gamma$ $= (x_1 + \beta)(x_2 + \alpha) + \alpha(x_1 + \beta) + \beta(x_2 + \alpha) + \gamma + \alpha\beta$ $+ \gamma = x_1x_2$

Then $\psi(x_1, x_2) = x_1 \& x_2$

Lemma is proven.

Theorem (Post's Functional Completeness Theorem)

A system **F** of boolean functions is functionally complete if and only if for each of the **five defined classes** T_0 , T_1 , S, M, L, there is a member of **F** which does not belong to that class.

Proof:

Necessity: Let **F** is functional complete, i.e. $[F] = P_2$.

Let us denote any of five classes as R and assume that $F \subseteq R$.

Then,
$$P_2 = [F] \subseteq [R] = R$$
.

So, $\mathbf{R} = \mathbf{P}_2$, that is contradiction.

Necessity is proved.

Sufficiency:

Let us assume, that F does not belong to any of five classes.

Then we can select subsystem $l = \{f_i, f_j, f_k, f_l, f_n\}$, which consists of no more than five functions, and also does not belong to any of five classes. These functions depend on the variables x_1, \dots, x_n .

I. Getting constants 0 and 1 from functions f_i, f_j, f_k .

Consider function $f_i \notin T_0$ (0-preserving).

Two cases are possible:

1. $f_i(1, ..., 1) = 1$, then $f_i(x, ..., x) = 1$, because $f_i(0, ..., 0) = 1$ and $f_i(1, ..., 1) = 1$ second constant (0) can be got by f_j : $f_i(1, ..., 1) = 1$

2. $f_i(1, ..., 1) = 0$, then $f_i(x, ..., x) = \neg x$,

because $f_i(0, ..., 0) = 1$ and $f_i(1, ..., 1) = 0$

Consider function $f_k \notin S$. As we have $\neg x$, then we can get constant according to Lemma 1.

Since we have $\neg x$, then we can get second constant.

So for both cases we can get constants **0** and **1**.

II. Getting function $\neg x$ from constants 0, 1 and function f_m .

It can be done according to Lemma 2.

III. Getting function $x_1 \& x_2$ from constants **0**, **1** and functions $\neg x$ and f_i .

It can be done according to Lemma 3.

So we have constructed functions $\neg x$ and $x_1 \& x_2$ by formulas under I and therefore under F.

Corollary 1

For every closed class of functions T from P_2 , if $T = P_2$, then T is included at least in one of constructed classes.

Definition

Class *R* of functions from P_2 is called **precomplete class**, if *R* is not complete and for every function $f (f \in P2, f \notin R)$, class $R \cup \{f\}$ – is complete.

Corollary 2

In the Boolean algebra there are only five precomplete classes:

$T_0, T_1, S, M, L.$

Post's Functional Completeness Theorem provides not only completeness criterion.

It allows (with Disjunctive normal form and Conjunctive normal form) to find formula for every boolean function by complete system functions.