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Describing a random experiment E
A random experiment E is an experiment in which the outcome or result cannot

be predicted with certainty. To assign probabilities to a RE, we need two

ingredients: a sample space and a σ-algebra.

Definition 1. A set Ω of points ω representing all the possible outcomes of E is

called a sample space.

Example 1. (i) Toss two coins. We are interested in the observed face of each

coin.

(ii) Toss two coins. We are interested in the number of heads obtained.

(iii) Toss one coin. Number of tosses until we get the first H.
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Remarks.

(i) The same experiment can have different sample spaces.

(ii) Different experiments can have equivalent sample spaces (can you think of an

example?).

Definition 2. Let F denote a collection of subsets of Ω. A subset A ∈ F is called

an event, and so F is a collection of events. An event A occurs if E results in an

ω ∈ A.

Events are important: later we will assign probabilities to all A ∈ F . But these

probabilities cannot be arbitrary, they need to satisfy some properties [→ axioms

of Probability Theory]. Moreover, we need F to satisfy some conditions [definition

4].

There are two special events: the null event, denoted ∅, cannot happen, and the

certain event Ω, which always happens. We can have A = {ω}. [A singleton.]
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Exercise 1. Roll a die. Consider events A = {Obtain an odd number} and

B = {Obtain a number larger or equal to 5}. Describe Ω for this experiment,

and express A and B as subsets of Ω.
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Manipulating events

We will need notation from set theory.

• #A denotes the number of elements in a (finite) set A.

• A is a subset of B if every element of a set A is also an element of a set B.

We write A ⊂ B.

• ω ∈ A⇔ {ω} ⊂ A.

• Union of events A∪B = {ω ∈ Ω | ω ∈ A or ω ∈ B}. A∪B is the event that

A or B or both occur.

• Intersection of events A ∩B = {ω ∈ Ω | ω ∈ A and ω ∈ B}. A ∩B is the

event that both A and B occur.

• Complementary event Ā = {ω ∈ Ω | ω /∈ A} occurs if and only if A doesn’t.
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Definition 3. (i) Two events A1 and A2 are mutually exclusive or disjoint if

A1 ∩A2 = ∅ (they cannot occur simultaneously).

(ii) Events A1, A2, A3, . . . are mutually exclusive if they are pairwise mutually

exclusive:

Ai ∩Aj = ∅ for any i 6= j .

(iii) Events A1, A2, A3, . . . are exhaustive if

n⋃
i=1

Ai = A1 ∪A2 ∪ . . . ∪An = Ω .
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Properties of event operations. Let A,B and C be subsets of Ω. Then we have

• Commutative laws.

A ∪B = B ∪A and A ∩B = B ∩A .

• Associative laws.

(A ∪B) ∪ C = A ∪ (B ∪ C) .

(A ∩B) ∩ C = A ∩ (B ∩ C) .

• Distributive laws.

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) .

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) .

• De Morgan’s laws.

(A ∪B) = Ā ∩ B̄ .

(A ∩B) = Ā ∪ B̄ .
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Example 2. Roll a die. Ω = {1, 2, 3, 4, 5, 6}. Let A = {5} and B = {1, 3, 5}.
Then

A ⊂ B A ∩B = A A ∪B = B

If in addition we define C = {2, 4, 6}, then A ∩ C = ∅. Moreover,

B ∪ C = Ω so C = B̄ .

We are now well equipped to express more complicated event, such as

• None of A,B,C occurred: Ā∩ B̄ ∩ C̄ = (A ∪B ∪ C) (Use De Morgan’s law).

• A occurred and at least one of B and C occurred: A ∩ (B ∪ C).

• Using De Morgan, A ∩ (B ∪ C) = Ā ∪B ∪ C = Ā ∪ (B̄ ∩ C̄).

Exercise 2. Re-express (A ∩B) ∪ (B ∩ C) ∪ (A ∩ C) as a union of disjoint

events. [Hint: draw a diagram.]
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It becomes clear that if A and B are events, then their union and complement

should also be events (in other words, we should be able to assign probabilities to

them). The same goes for their intersection, which is automatic from De Morgan’s

laws. In fact, we need a bit more, we need to be allowed to take countable unions

of events. When dealing with countably many elements, we use the symbol σ.

Definition 4. A class F of subsets of Ω is called a σ-algebra if the following holds

(i) Ω ∈ F

(ii) A ∈ F ⇒ Ā ∈ F

(iii) A1, A2, . . . ∈ F ⇒
⋃∞
i=1Ai ∈ F .

Note that ∅ ∈ F since ∅ = Ω̄ and using (i) and (ii).

If A1 and A2 are in F , then A1 ∪A2 ∈ F : take A3 = A4 = . . . = ∅. Also,

A1 ∩A2 = (Ā1 ∪ Ā2) ∈ F .

Definition 5. The pair (Ω,F) is called a measurable space.
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Examples of σ-algebra.

(i) Trivial σ-algebra F = {∅,Ω}.

(ii) If Ω = {a, b} has |Ω| = 2 elements, then F = {∅, {a}, {b},Ω}, the collection

of all possible events, is obviously a σ-algebra. This σ-algebra has a special

name: the power set. It is usually denoted 2Ω or P(Ω). It contains

|F| = 2|Ω| = 4 distinct events.

(iii) If Ω = {a, b, c, d}, then the set of all subsets P(Ω) has 2|Ω| = 16 elements.

P(Ω) = {∅, {a}, . . . , {d}, {a, b}, . . . , {c, d}, {a, b, c}, . . . , {b, c, d},Ω} .

However, it is not the only σ-algebra on Ω, F = {∅, {a, b}, {c, d},Ω} also

does the job.

(iv) There is an extension when Ω has countably many elements (e.g. Ω = N).

(v) What about Ω = R? The power set of R is a σ-algebra. However, it is too

big, it contains monsters. [We get back to this point later.]
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Axioms of Probability Theory
Let (Ω,F) be a measurable space. A probability is a real-valued function P that

assigns to each event A ∈ F a number P(A), called probability of the event A,

such that:

(i) P(A) > 0

(ii) P(Ω) = 1

(iii) If a sequence of events {An} is mutually exclusive, then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An) .

Claims (i), (ii) and (iii) are called axioms. We take them for granted. From these

three axioms, we can build a whole theory. They constitute the foundations of

modern probability (Introduced by Kolmogorov in 1933). Motivation for using (i),

(ii) and (iii) as building blocks of probability theory comes from the frequency

interpretation of probability. (Ω,F ,P) is called a probability space.
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Example 3. Back to the roll of a die. Ω = {1, 2, 3, 4, 5, 6}. Then

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6 .

At this stage, a few remarks are in order.

(a) On the same measurable space (Ω,F), we can have different probability

distributions. In Exemple 6, what happens if you roll a biased die?

(b) To completely specify P, we do not need to know P(A) for all events in F .

That’s good, since the total number of events can be huge. Instead, it is

usually sufficient to know P(A) for a few events only.

(c) What happens to axiom (iii) when the sequence of events {An} is not

mutually exclusive?

(d) What happens if axiom (iii) holds true only for finitely many events {An}?
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Properties of probability.

Let A,B ∈ F .

(i) P(∅) = 0

(ii) P(Ā) = 1−P(A)

(iii) If A ⊂ B, then P(A) ≤ P(B)

(iv) P(A) ≤ 1

(v) P(A) = P(A ∩B) + P(A ∩ B̄)

(vi) P(A ∪B) = P(A) + P(B)−P(A ∩B)

Property (v) is fundamental, and central to many proofs in probability theory. It

even has a name: Law of Total Probability (LTP). We will encounter this law in a

more general form later on.
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Note on classical probability

Refers to the case when Ω is a finite set, and that all outcomes are equally likely.

If n = |Ω| denotes the number of elements of Ω, then P({ω}) = 1/n.

For any event A, we have

P(A) =
∑
ω∈A

1

n
=

#A

n
=

#A

#Ω
.

In this case, computing the probability of A a requires the computation of the

number of elements in A (using combinatorics).

We will not focus on the classical scheme in this course.
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Conditional probability

Introductive example. Suppose there are 20 tulip bulbs very similar in

appearance. We are told that

• 8 tulips bloom early (call this event E).

• 12 will bloom late (L)

• 13 are red (R)

• 7 are yellow (Y)

E L Total

R 5 8 13

Y 3 4 7

Total 8 12 20

15



Select a bulb at random, assuming that each bulb is equally likely. The sample

space Ω consists in the 20 bulbs, and

P(E) = 8/20, P(R) = 13/20, P(R ∩ E) = 5/20 .

Suppose now we are told the selected bulb will bloom early. What is the

probability that the bulb will produce a red tulip?

P(R | E) = 5/8 =
#R ∩ E

#E
=

(#R ∩ E)/(#Ω)

(#E)/(#Ω)
=

P(R ∩ E)

P(E)
.

This leads to the following definition:
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Definition 6. The conditional probability of A given B, denoted P(A | B), is

P(A |B) =
P(A ∩B)

P(B)
,

provided P(B) > 0.

Note that for a fixed B, P(· | B) is also a probability distribution (it satisfies the

three axioms of probability). Can you prove this?

Definition 7. Multiplication rule.

P(A ∩B) = P(A |B)P(B)

= P(B |A)P(A)

The multiplication rule can be extended to three or more events:

P(A ∩B ∩ C) = P(C |A ∩B)P(A ∩B)

= P(C |A ∩B)P(B |A)P(A) .
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Exercise 3. Policy holders in an insurance company are such that 60% are with

auto policies, 40% with homeowner policies, and 20% with both. A person is

selected at random from the policy holders. Consider the following events

A1 = {He/She has only auto policy}
A2 = {He/She has only homeowner policy}
A3 = {He/She has both}
A4 = {He/She has neither}
B = {He/She is to renew at least one policy} .

Furthermore, it is known that

P(B |A1) = 0.6, P(B |A2) = 0.7, P(B |A3) = 0.8, P(B |A4) = 0 .

What is the conditional probability that the person will renew at least one of the

auto and homeowner policies given that he/she currently has an auto or

homeowner policy?
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Independent Events

We say that two events A and B are independent if the occurrence of one does

not change the likelihood of the other. Namely, P(A |B) = P(A), or

P(B |A) = P(B). Since one has

P(A |B) =
P(A ∩B)

P(B)
= P(A) ,

we get P(A ∩B) = P(A)P(B). We take this as a definition of independence.

Definition 8. Two events A and B are independent if and only if

P(A ∩B) = P(A)P(B) .
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Warning: Do not confuse disjoint and independent events.

Disjoint events is a set theory concept: the occurrence of one event is

incompatible with the occurrence of the other. If you roll a die, then

A = {number is less than 2} and B = {number is larger than 5} are disjoint.

There is no probability in this definition.

Independence is a measure theoretic concept (think of a probability in terms of a

measure): learning that one event occurs does not provide information about

whether the other event occurred. In fact, two disjoint events cannot be

independent, except in the trivial case, since if A ∩B = ∅, then

P(A ∩B) = P(∅) = 0 6= P(A)P(B).
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Theorem 1. If A and B are independent, then

(i) A and B̄ are independent

(ii) Ā and B are independent

(iii) Ā and B̄ are independent
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Exercise 4. A home audio system is composed of a tuner, a CD player, an

amplifier and two speakers. The home audio system is said to be working when

either the tuner or CD player, the amplifier, and at least one speaker are working.

Assume that these components are working independently of each other. Write

down the probability of the event A = {Home audio system is working } in

terms of the events Ci = {Component i is working}. What about the probability

of failure of the audio system?
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Example 4. An urn contains 4 balls numbered 1,2,3 and 4. One ball is drawn at

random from the urn. Let A = {1, 2}, B = {1, 3} and C = {1, 4}.

Then obviously P(A) = P(B) = P(C) = 1/2. Moreover,

P(A ∩B) = 1/4 = P(A)P(B)

P(A ∩ C) = 1/4 = P(A)P(C)

P(B ∩ C) = 1/4 = P(B)P(C) .

In other words, A,B and C are pairwise independent. However,

P(A ∩B ∩ C) = 1/4 6= 1/8 = P(A)P(B)P(C) .

Something is missing for the complete independence of A,B and C. This leads us

to the following definition:
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Definition 9. Events A1, A2, . . . , An are mutually independent if, for any

subcollection {j1, . . . , jn} ⊂ {1, . . . , n},

P(Aj1 ∩ . . . ∩Ajn) = P(Aj1)× . . .×P(Ajn) .

Mutual independence implies pairwise independence, but the converse is not true.

Note that for mutually independent events A1, . . . , An, the following collection of

events are also mutually independent:

Ā1, A2, A3, . . . , An

Ā1, Ā2, A3, . . . , An

A1 ∩A2, A3, . . . , An

A1 ∪A2, A3, . . . , An
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Exercise 5. Show that A ∪B and C are independent if A,B and C are mutually

independent.

Prove this as well for Ā and B ∩ C̄. Is this true for Ā, B and C̄?
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Law of Total Probability

Definition 10. A partition of Ω is a collection of disjoint and exhaustive events

A1, A2, . . . , An, that is

• Ai ∩Aj = ∅ for all i 6= j

•
⋃
iAi = Ω .

Note that the simplest partition is of the form (A, Ā).

Let B be some event. Then

B = B ∩ Ω = B ∩ (
⋃
i

Ai) =
⋃
i

(B ∩Ai) .

It follows from the third axiom that

P(B) = P

(⋃
i

(B ∩Ai)

)
=
∑
i

P(B ∩Ai) =
∑
i

P(B | Ai)P(Ai) .

This brings us to the law of total probability:
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Law of Total Probability (LTP).

If A1, A2, . . . , An form a partition of Ω, then

P(B) =
∑
i

P(B ∩Ai) =
∑
i

P(B | Ai)P(Ai) .

Exercise 6. Suppose we have a medical test to test whether or not a patient has

a disease. Suppose

• If the patient has the disease, the result of the test is positive with probability

0.95

• If the patient is healthy, the test is positive with probability 0.01

Suppose that 5 in 1000 suffer from this disease. What is the probability that a

(randomly chosen) patient will test positive?
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Bayes Theorem

Same set up as for the LTP: suppose we have a partition A1, A2, . . . , An of Ω,

and some event B. Then

P(Ai |B) =
P(Ai ∩B)

P(B)
(definition of conditional probability)

=
P(B |Ai)P(Ai)

P(B)
(multiplication rule)

=
P(B |Ai)P(Ai)∑n
k=1 P(B |Ak)P(Ak)

This is Bayes Theorem.
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Exercise 7. Consider a multiple choice exam that has m choices of answer each

question. Assume that the probability that a student knows the correct answer to

a question is p. A student that doesn’t know the correct answer marks an answer

at random. Suppose that the answer marked to a particular question was correct.

What is the probability that the student knows the right answer?
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Random Variables

In a random experiment, we are sometimes (often) interested in some function of

the outcome, rather than the actual outcome itself.

A random variable is a quantity X = X(ω) whose value depend on the outcome

of our random experiment.

Definition 11. Consider a random experiment E with sample space Ω. A

(real-valued) function X on Ω such that for any real x the set

{X ≤ x} = {ω ∈ Ω | X(ω) ≤ x}

is an event is called a Random Variable (RV). The state space SX of X is the set

of possible values of X,

SX = {x | X(ω) = x, ω ∈ Ω} .
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Remarks:

(a) The term RV is unfortunate since X is neither random nor a variable.

(b) RVs are denoted using capital letters (X,Y and Z most commonly), and the

values they take by lower case letters (e.g. x, y, z). Thus, X is a function and

x a real number.

(c) X is not necessarily a one-to-one function: there may be several outcomes

ω ∈ Ω such that X(ω) = x.

Example 5. Consider the toss of three (unbiased) coins. The sample space of this

experiment is Ω = {hhh,hht,hth,htt,thh,tht,tth,ttt}. Let X be the number of

heads. The possible values of X are 0,1,2 and 3 (state space SX = {0, 1, 2, 3}),

and X({htt}) = X({tht}) = X({tth}) = 1.

Alternatively, since we are only interested in the number of heads, we can take

Ω = {0, 1, 2, 3} = SX . [→ Not always necessarily a good thing to do – why?]
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The previous example shows that we can view the possible values of x as new

omegas.

What about a probability on this new space?

So far we have learnt how to deal with probabilities P defined on (Ω,F). Now

what?

We need to consider two types of RVs: discrete and continuous. We start with

discrete.

Definition 12. A random variable X is said to be discrete if its state space SX is

finite, or countably infinite. [Usually a subset of {0, 1, 2, 3, . . .}.]

To specify a probability on SX , we only need to know the probability of particular

outcomes

pX(x) := P(X = x) := P({ω | X(ω) = x}) =
∑

ω|X(ω)=x

P({ω}) .
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Definition 13. For a discrete random variable X with state space SX ,

pX(x) = P(X = x) for x ∈ SX is called the probability mass function or pmf of

X.

The pmf of X ‘stores’ all information you need about X. In other words, knowing

pX is enough to know everything you want about X.

We shift our interest from the probability space (Ω,F ,P) towards the newly

defined probability pX of the random variable X.

Exercise 8. Roll a four-sided die twice. Let a random variable X = the larger of

the two face numbers appeared if they are different and the common value if they

are the same. Describe the sample space Ω of this experiment, specify the

probability P on it, and the probability pX induced by X.
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We have:

1 = P(Ω) = P({ω | X(ω) ∈ SX})

= P({ω | X(ω) = x1 or x2 or x3 or . . . })

=
∑
x∈SX

P({ω | X(ω) = x}) (union of disjoint events)

=
∑
x∈SX

P(X = x) =
∑
x∈SX

pX(x).

Obviously, pX(x) ≥ 0, ∀x ∈ SX since by definiiton pX(x) = P({ω | X(ω) = x}).

Theorem 2. The pmf pX(x) of a discrete random variable X satisfies the

following properties

(i) pX(x) ≥ 0, for all x ∈ SX

(ii)
∑
x∈SX pX(x) = 1
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Remark: Two RVs can have the same pmf (we also say the same law) without

being equal!

Example 6. Roll two dice, one red and one black. Let

X = number obtained on the red die

Y = number obtained on the black die .

Here
Ω = {(1, 1), . . . , (6, 6)}

SX = {1, 2, 3, 4, 5, 6}

SY = {1, 2, 3, 4, 5, 6} = SX .

Obviously
pX(k) = pY (k) = 1/6, k = 1, . . . , 6 .

Thus X and Y have the same law, but we do not have X = Y , which would

mean X(ω) = Y (ω) for all ω. [In words – what does X(ω) = Y (ω) mean?]
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Another way to specify the distribution of a RV is via its cumulative distribution

function.

Definition 14. The cumulative distribution function or cdf FX(x) of a discrete

random variable X is a function from R to [0, 1] defined by

FX(x) = P(X ≤ x) .
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We notice that for a discrete RV, the cdf FX(x) =
∑
y≤x pX(y) is a pure jump

function, with pX(x) being the jump in FX at x.

Other important properties of the cdf can easily extracted:

(i) 0 ≤ FX(x) ≤ 1 since it is a probability (FX(x) = P(X ≤ x)).

(ii) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

(iii) For any x < y, P(x < X ≤ y) = FX(y)− FX(x).

Indeed, {X ≤ y} can be expressed as a union of two disjoint events

{X ≤ x} ∪ {x < X ≤ y}, so that P(X ≤ x) + P(x < X ≤ y) = P(X ≤ y).

(iv) FX(x) is non-decreasing.

Indeed, for any x < y, FX(y)− FX(x) = P(x < X ≤ y) ≥ 0.

(v) FX(x) is right-continuous.

So, for discrete RVs, we can specify its distribution by means of its pmf or cdf,

and knowing one, we can always compute the other. So why bother? Because for

continuous RVs, pmf does not work, while cdf works. [Details coming up soon.]
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Bernoulli trial

In the simplest case, a random experiment has only two possible outcomes: a

‘success’ and a ‘failure’. Such a random experiment is called a Bernoulli trial.

Example 7. Coin tossing, die rolling (e.g. ‘success’=1), any random experiment

where ‘success’ corresponds to the occurrence on a certain event A.

Let p be the probability of a success. A Bernoulli RV corresponds to the number

of success in a single Bernoulli trial, so

X =

1 with probability p

0 with probability 1− p .

The pmf of X is thus pX(1) = p = 1− pX(0). We say that X has a Bernoulli

distribution and we write

X ∼ B(p) .
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Sequence of Bernoulli trials

Consider now a sequence of n independent Bernoulli trials (the outcome of one

trial does not affect the outcome of another trial). We are interested in different

aspects of the observed sequence of successes and failures, such as

• The number of successes (Binomial distribution).

• The number of failures before the first success (Geometric distribution).

The sample space Ω can be taken to be the set of all sequences of the form

ω = S F S S F . . . F F S ,

and
P({ω}) = p#successes(1− p)#failures .

Consider first X =number of successes. What is the distribution of X?
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Example 8. Take n = 3. The probability for each possible outcome of X is given

below

X outcome probability

3 S S S p3

2 S S F p2(1− p)
S F S p2(1− p)
F S S p2(1− p)

1 S F F p(1− p)2

F S F p(1− p)2

F F S p(1− p)2

0 F F F (1− p)3

We see that

pX(0) = (1− p)3 , pX(1) = 3p(1− p)2 , pX(2) = 3p2(1− p) , pX(3) = p3 .

40



The distribution of X can be summarized into

pX(x) = N(3, x) px(1− p)3−x , for x = 0, 1, 2, 3 .

The coefficient N(3, x) gives the number of ways of selecting x positions for the x

successes in the n = 3 trials. To generalize the previous distribution for any n, we

need an expression for N(n, x).

We can verify that

N(n, x) =

(
n

x

)
=

n!

(n− x)!x!
.

[How many ways can you choose k objects out of n distinct objects if order

matters? if order does not matter?]
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We say that X has Binomial distribution with parameters n ≥ 1 and p ∈ [0, 1] if

its pmf is given by

pX(x) =

(
n

x

)
px(1− p)n−x , x = 0, 1, . . . , n ,

and we write
X ∼ Bi(n, p) .

[Check that the pmf sums to one.]

Exercise 9. Tay-Sachs disease is a rare disease that progressively destroys

neurons in the brain and spinal cord. This condition is inherited in a recessive

pattern, meaning that a child must have a copy of the mutated gene from each

parent to have the disease. Parents with only one copy of the mutated gene do

not show symptoms of the disease. If such parents have 4 children, what is the

probability that at least one of them present signs of the condition?
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Shape of the Binomial distribution

Look at the ratio of successive binomial probabilities

r(x) =
pX(x)

pX(x− 1)
=

(
n
x

)(
n
x−1

) px(1− p)n−x

px−1(1− p)n−x+1
=

(n+ 1)/x− 1

1/p− 1
,

and compare this ratio with the value 1. The binomial distribution has a single

peak, and typically looks like.

0 1 2 3 4 5

x

pm
f

0.
00

0.
15

0.
30

This one is for n = 5 and p = 0.4.
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Geometric distribution

Back to our random experiment consisting in the sequence of independent

Bernoulli trails, with probability of success p.

Define T to be the number of failures before the first success. What is the

distribution of T?

First, note that this number can be arbitrarily large. The set of possible values of

T is thus ST = {0, 1, 2, 3, . . .}. Then

pT (0) = P(T = 0) = P(S) = p

pT (1) = P(T = 1) = P(F S) = (1− p) p

pT (2) = P(T = 2) = P(F F S) = (1− p)2p ,

and more generally,

pT (t) = (1− p)t p , t = 0, 1, 2, . . .
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We say that T has a Geometric distribution with parameter p if its pmf is given by

pT (t) = (1− p)tp , t = 0, 1, 2, . . . ,

and we write

X ∼ G(p) .

[Check that the pmf sums to one.]

Remark: The Geometric distribution can be defined in a slightly different way, by

counting the number of trials until the first success instead of the number of

failures before it. Can you derive the pmf in this case?

Lack of memory property. Given the first x trials are failures, what is the

distribution of the ‘residual time’ T − x until the occurrence of the first success?
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Negative binomial distribution

What about the distribution of the number of failures before the occurrence of the

r-th success (call it X)?

Suppose we observe x failures, and r successes,

ω = F F F F F F F F F F S S S S S |S ,

corresponding to the event {X = x}. There are
(
x+r−1
r−1

)
of such arrangements,

leaving the final r-th success. The probability of this sequence is (1− p)xpr. Thus

pX(x) = P(X = x) =

(
x+ r − 1

r − 1

)
(1− p)xpr , x = 0, 1, 2, 3, . . . .

We say that X has a negative binomial distribution, and we write

X ∼ NB(r, p) .
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Poisson distribution

The Poisson distribution is the ‘continuous analogue’ of Bernoulli trials. A Poisson

RV counts the number of successes occurring in continuous time. [→ But it is

still a discrete RV!]

Suppose we have n independent Bernoulli trials. Consider time slots of length

1/n, so that we are interested in counting the number of successes occurring from

0 to 1.

During each time slot, suppose that the probability of a success is proportional to

1/n: the longer you wait, the more likely you obtain a success.

Let X be the number of successes occurring from 0 to 1. Then

X ∼ Bi(n, λ/n) ,

so that

P(X = x) =

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x
, x = 0, 1, . . . .
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Now, shrink the length of time for each interval by taking n larger and larger. In

the limit,

lim
n→∞

P(X = x) = lim
n→∞

n!

nx(n− x)!

λx

x!

(
1− λ

n

)n(
1− λ

n

)−x
=
λx

x!
e−λ ,

since
n!

nx(n− x)!
=
n(n− 1) . . . (n− x+ 1)

nx
→ 1 as n→∞ .

A discrete random variable X is said to have a Poisson distribution with parameter

λ > 0 if

pX(x) =
λx

x!
e−λ , x = 0, 1, 2, . . . ,

and we write

X ∼ P(λ) .

[Check that the pmf sums to one.]
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Note that

r(x) =
pX(x)

pX(x− 1)
=
λx

x!
e−λ

(x− 1)!

λx−1
eλ =

λ

x
, for x = 1, 2, . . .

so the pmf of a Poisson RV has a single peak located at x = λ, increases as a

function of x for X ≤ λ and decreases for x ≥ λ. Typically,

0 1 2 3 4 5 6 7 8

x

pm
f

0.
00

0.
10

0.
20

This one is for λ = 2.
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We already know we can approximate binomial probabilities using a Poisson

distribution. [→ This is how we introduced it!] More generally,

Poisson Theorem. If Xn ∼ Bi(n, pn) and npn → λ as n→∞, then for all

x = 0, 1, 2, . . .

pXn(x)→ pX(x) , where X ∼ P(λ) .

In other words, the distribution of the number of rare events [i.e. for small pn] is

approximatively Poisson.
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Uniform distribution

The uniform distribution formalizes the idea of equally likely outcomes.

Suppose there are only finitely many possible outcomes. A uniform random

variable X taking values in SX = {m,m+ 1, . . . , n} has pmf

pX(x) = P(X = x) =
1

n−m+ 1
, x = m, . . . , n .

We write

X ∼ U(m,n) .

In particular, if X ∼ U(1, n), then pX(x) = 1/n. For example, if you roll a fair

die, the number obtained ∼ U(1, 6).

[Picture of the uniform pmd and cdf.]
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Expectation

Recall the frequency interpretation of probability: when performing the same

experiment n times in the same conditions, we observes empirically that for an

event A
nA
n
≈ constant = P(A) ,

where nA denotes the number of times event A occurs.

Similarly, if we observe n realizations Xj of a RV, then it is also empirically

observed that the mean ∑n
j=1Xj

n
≈ constant
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Suppose X can only take finitely many values x1, . . . , xn. Then

1

n

n∑
j=1

Xj =
1

n
(x1n{X=x1} + . . .+ xnn{X=xn})

=
n∑
j=1

xj
n{X=xj}

n

≈
n∑
j=1

xjpX(j) ,

which leads to the following definition

Definition 15. The expected value or mean or first moment of a discrete random

variable X with state space SX , denoted E (X) or µX is

µX = E (X) =
∑
x∈SX

xpX(x) .

This can be an infinite series, and so it should converge..
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Note that in the case of a discrete sample space Ω,

E (X) =
∑
x

xpX(x) =
∑
x

x
∑

ω|X(ω)=x

P({ω}) =
∑
ω∈Ω

X(ω)P({ω}) .

This expression is useful to derive the expected value of a transform ψ(X) of X,

for some (real-valued) function ψ.

Let Y = ψ(X). Then

E (ψ(X)) = E (Y ) =
∑
y

ypY (y) .

It seems that we need to compute the pmf of Y . Well, using the expression

above, we see that

E (Y ) =
∑
ω∈Ω

Y (ω)P({ω})

=
∑
ω∈Ω

ψ(X(ω))P({ω}) .
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E (Y ) =
∑
x

∑
ω|ψ(ω)=x

ψ(X(ω))P({ω})

=
∑
x

ψ(x)
∑

ω|ψ(ω)=x

P({ω})

=
∑
x

ψ(x) pX(x) .

Theorem 3. Let X be a discrete RV with state space SX , pmf pX(x), and let ψ

be some real-valued function. Then,

E (ψ(X)) =
∑
x∈SX

ψ(x) pX(x) .

(Again, provided the sum converges..)
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Exercise 10. Let X be a discrete RV with pmf

pX(x) = 1/3 , x ∈ Sx = {−1, 0, 1} ,

and let ψ(x) = x2. Find E (ψ(X)).
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Properties of expectation.

(i) For a constant c, E (c) = c.

Indeed, E (c) =
∑
x xpX(x) = c · 1 = c.

(ii) E (λX) = λE (X) for any λ ∈ R.

In particular, E (−X) = −E (X).

Consequence: Expectation is linear. Let f(x) = λx+ c. Then

E (f(X)) = E (λX + c) = λE (X) + c = f(E (X)).

Warning: E (f(X)) 6= f(E (X)) in general.

(iii) |E (X)| ≤ E |X| (triangle inequality).

(iv) If X can only take non-negative integer values 0, 1, 2, 3, . . ., then

E (X) =

∞∑
n=0

(1− FX(n)) .
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Describing a distribution

Recall that the pmf and cdf completely specify a distribution. What if we are

interested in a brief summary of a given distribution?

Using words or just a picture is nice but not (precise) enough. Instead, we need a

few numbers which give a reasonable idea of what the distribution looks like.

We have already seen one example: the mean E (X), which can be interpreted as

the centre of mass of our distribution.

Other features to be summarized are for example spread (how likely are we to

deviate from the mean?), or symmetry (is the distribution skewed?).
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The most widespread measures of spread are the variance and standard deviation.

Definition 16. The variance of X is defined by

Var(X) = E(X −E(X))2 ,

and the standard deviation is σX =
√

Var(X).

Why? By definition, denoting µX = E (X), and assuming that X takes only

finitely many values,

Var(X) =
∑
x∈SX

(x− µX)2pX(x)

= (x1 − µX)2pX(x1) + . . .+ (xn − µX)2pX(xn) ,

which is a weighted sum of the squares of the differences

(x1 − µX), . . . , (xk − µX). Var(X) indeed measures the variability of X about its

mean: the smaller Var(X) and the more often X stay near E (X), whereas a large

value of Var(X) is an indicator that X varies about E (X) a lot.
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So why bother introducing σX? Because the standard deviation and X are

expressed in the same unit.

Example 9. Suppose the pmf of X is given by

pX(−1) = pX(0) = pX(1) = 1/3 .

Then E (X) = 0 and Var(X) = E (X2) = 2/3. Suppose now we are given

another random variable Y with pmf

pY (−2) = pY (0) = pY (2) = 1/3 .

Then E (Y ) = 0 and Var(Y ) = E (Y 2) = 8/3 >Var(X). Why? [Draw a picture.]

60



Properties of variance.

(i) Var(X) ≥ 0.

Indeed, by definition Var(X) = E (X − µX)2 =
∑

(x− µX)2pX(x) (sum of

positive terms).

(ii) Var(X) = E (X2)− (E (X))2.

By definition,

Var(X) = E (X −E (X))2

= E (X2 − 2XE (X) + (E (X))2)

= E (X2)− 2E (X)E (X) + (E (X))2

= E (X2)− (E (X))2

Note that since the variance is non-negative, we get E (X2) ≥ (E (X))2.

E (X2) is called the second moment of X.
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(iii) If Y = aX + b, then Var(Y ) = a2Var(X), and σY = |a|σX .

Indeed, µY = aµX + b. Next

Var(Y ) = E (Y − µY )2

= E (aX + b− (aµX + b))2

= E (a2(X − µX)2)

= a2 E (X − µX)2

= a2 Var(X) .

(iv) If X has mean µ and standard deviation σ, then

Z =
X − µ
σ

has mean 0 (centered) and variance 1 (standardised).
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Example 10. Mean and variance of the Uniform distribution.

Let X ∼ U(1,m). Then

E (X) =
m∑
x=1

x
1

m
=

1

m

m∑
x=1

x =
1

m

m(m+ 1)

2
=
m+ 1

2
,

E (X2) =
m∑
x=1

x2 1

m
=

1

m

m(m+ 1)(2m+ 1)

6
=

(m+ 1)(2m+ 1)

6
,

Var(X) =
1

12
(m2 − 1) .
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Continuous random variables

Definition 17. Let X be a RV. If X can take any value in an interval, we say

that X is a continuous random variable.

More formally, the state space SX of X is uncountable (usually SX = R).

Example 11. Temperature, height, weight, amount of rainfalls, time to failure,

waiting time, etc.

It is not possible to assign directly a probability to every possible value of a

continuous RV (there are too many of them). In Part 1, we underlined the

importance of σ-algebras, and we already mentioned that the power set of R
contains monsters. For example, working with P(R) would result in the

impossibility to define a uniform distribution on the interval [0, 1], which is a

disaster!
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Instead, we assign probabilities to intervals, and we need all open intervals (a, b)

to be there. Taking the smallest σ-algebra containing such intervals is meaningful.

This is the so-called Borel σ-algebra, denoted B(R), or simply B.

Note that since all An = (x−n, x) ∈ B(R), for n = 1, 2, . . . and any given x, then

A =
∞⋃
n=1

An = (−∞, x) ∈ B(R)

Ā = [x,∞) ∈ B(R) .

Moreover, all Bn = (y, y + n) ∈ B(R) as well, so that

B =

∞⋃
n=1

Bn = (y, ∞) ∈ B(R)

B̄ = (−∞, y] ∈ B(R)

Ā ∩ B̄ = [x, y] ∈ B(R) ,

and in particular, taking x = y, we see that {x} ∈ B(R).
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When you see A ∈ B(R), think of A as an interval!

To specify the distribution of X, we thus want to specify the probability of

intervals ⇒ cdf!

Definition 18. Let X be a continuous RV. A function fX(x) such that

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u)du ,

is called a probability density function (pdf) of X.

Properties.

(i) By definition, at points x where FX(x) is differentiable,

fX(x) =
dFX(x)

dx
.

(ii) FX(x) is non-decreasing ⇒ fX(x) ≥ 0 for all x ∈ R.

(iii)
∫∞
−∞ fX(u)du = limx→∞ FX(x) = 1.
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(iv) For x < y,

P(x < X ≤ y) = P(X ≤ y)−P(X ≤ x)

=

∫ y

−∞
fX(u)du−

∫ x

−∞
fX(u)du

=

∫ y

x

fX(u)du ,

which is the area under fX(x) bounded by x and y.

Consequence: P(X = x) = P(x ≤ X ≤ x) =
∫ x
x
fX(u)du = 0 if fX has no mass

at x (and thus FX is continuous at x). Moreover,

P(x < X ≤ y) = P(x ≤ X ≤ y) = P(x ≤ X < y) = P(x < X < y) .

Important: FX is a probability. fX is not a probability, it does not need to be

less than 1.
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But then... if fX(x) is not the probability of the event {X = x}, then what is it?

Let’s have a look at the probability that X takes values in a small neighborhood

around x [
x− ε

2
, x+

ε

2

]
, ε > 0 small.

Then

P(X ≈ x) = P
(
X ∈

[
x− ε

2
, x+

ε

2

])
=

∫ x+ ε
2

x− ε2
fX(u)du

≈ fX(x)ε ,

where we used the fact that fX is approximately constant in a small

neighbourhood of x.

Infinitesimal notation: P(X ∈ du) = fX(u)du = dFX(u), so that

P(x ≤ X ≤ y) =

∫ y

x

P(X ∈ du) =

∫ y

x

dFX(u) =

∫ y

x

fX(u)du .
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Example 12. Let X be a continuous RV with density

fX(x) =


0 if x < 0

4x if 0 ≤ x < 1/2

1/3 if 1/2 ≤ x < 2

0 if x ≥ 2

(Check that fX can be regarded as a pdf)

The cdf of X is FX(x) = P(X ≤ x), can be found to be

FX(x) =



∫ x
−∞ 0du = 0 if x < 0∫ 0

−∞ 0du+
∫ x

0
4udu = 2u2 if 0 ≤ x < 1/2∫ 0

−∞ 0du+
∫ 1/2

0
4udu+

∫ x
1/2

1
3du = 1

2 + 1
3 (x− 1

2 ) if 1/2 ≤ x < 2∫ 0

−∞ 0du+
∫ 1/2

0
4udu+

∫ 2

1/2
1
3du+

∫ x
2

0du = 1 if x ≥ 2 .

[Plots required.]
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Note that we can use either fX or FX to compute various probabilities of X.

What is P(1/4 < X ≤ 3/2)?

(i) Using pdf ...

=

∫ 1/2

1/4

fX(u)du+

∫ 3/2

1/2

fX(u)du =

∫ 1/2

1/4

4udu+

∫ 3/2

1/2

1

3
du

= 2

[
1

4
− 1

16

]
+

1

3

[
3

2
− 1

2

]
= 17/24

≈ 0.708 .

(ii) Using cdf..

P(1/4 < X ≤ 3/2) = FX(3/2)− FX(1/4)

=
1

2
+

1

3
(
3

2
− 1

2
)− 2

1

16
≈ 0.708 .
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Comparison between discrete and continuous RVs

Discrete RV Continuous RV

X has at most countably many values X has uncountably many possible values

pmf pX(x) = P(X = x) pdf fX(x) ≥ 0 (not a proba)∑
x∈SX pX(x) = 1

∫ +∞
−∞ fX(x)dx = 1

cdf FX(x) =
∑
y≤x pX(y) cdf FX(x) =

∫ x
−∞ fX(u)du

FX is discontinuous, with jumps FX is continuous if fX has no mass

at possible values of X

P(x < X ≤ y) =
∑
x<u≤y pX(u) P(x < X ≤ y) =

∫ y
x
fX(u)du

= FX(y)− FX(x) = FX(y)− FX(x)
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Summarising a continuous RV

For continuous RVs, definitions associated with the mathematical expectation are

the same as those for discrete RVs, except that integrals are used to replace

summations.

Definition 19. (i) The expectation or mean or first moment of X is

µX = E (X) =

∫
x fX(x) dx .

(ii) The variance of X is

σ2 = Var(X) = E (X − µX)2 =

∫
(x− µX)2fX(x) dx .

(iii) The standard deviation of X is

σX =
√

Var(X) .
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(iv) The (100 p)-th percentile of X is a number πp such that

p =

∫ πp

−∞
fX(x)dx = FX(πp)

For continuous cdfs, πp = F−1
X (p). [Picture.]

To cover cases where FX is not continuous, we need the more formal

definition FX(πp − 0) < p ≤ FX(πp). [Picture.]

Examples of percentiles include

(a) p = 0.5⇒ π0.5 =: m is the median of a RV.

(b) The πp corresponding to p = 0.25, 0.5, 0.75 are the quartiles of a RV.

Quantiles are useful summary of distributions, and are often used in statistics.
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Remarks:

(i) Connection with expected value of a discrete RV.

Partition SX into n intervals of length ε. Then

E (X) =

∫
SX

x fX(x)dx ≈
n∑
i=1

xifX(xi)ε ≈
n∑
i=1

xiP(xi ≤ X < xi + ε) .

(ii) If X ≥ 0, an alternative expression for the mean is

E (X) =

∫ ∞
0

(1− FX(x))dx .

Compare this expression with the alternative expression of E (X) obtained in

the discrete case.
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Uniform distribution

By analogy to the discrete case, a continuous uniform RV has a constant pdf over

SX (obviously, SX needs to be bounded).

Let a < b be real numbers. A continuous random variable U with pdf

fU (u) =


1

b− a
if u ∈ (a, b)

0 elsewhere,

is said to have a uniform distribution over the interval (a, b), and we write

U ∼ U(a, b) .

The cdf of U is then

FU (u) = P(U ≤ u) =

∫ u

a

1

b− a
dv =

u− a
b− a

if a < u < b,

and FU (u) = 0 for u < a, FU (u) = 1 for u > b. [Plots required.]
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Moments of U

E (U) =

∫ b

a

u

b− a
du =

1

b− a

[
u2

2

]b
a

=
1

2

b2 − a2

b− a
=
a+ b

2
.

E (U2) =

∫ b

a

u2

b− a
du =

1

b− a

[
u3

3

]b
a

=
1

3

b3 − a3

b− a
.

Var(U) = E (U2)− (E (U))2 =
(b− a)2

12
(after simplifications).

An important special case is the standard uniform distribution U(0, 1). It plays a

central role in computer generation of random numbers. Namely, any random

number generated by a computer program is generated through generation of a

standard uniform number.
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Exercise 11. Suppose a value x is chosen at random in the interval [2, 6], so that

X ∼ U(2, 6). This value divides the interval [2, 6] into two subintervals of

respective lengths X − 2 and 6−X. Introduce

Y = max(X − 2, 6−X) ,

corresponding to the length of the largest interval. Distribution of Y ?
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Exponential distribution

Recall that a geometric RV counts the number of failures (on a discrete time grid)

before the occurrence of the first success.

The exponential distribution is the continuous version of a geometric RV. It

models the waiting time until the occurrence of a given event.

Let T = waiting time to the first event (taking values in [0, ∞)).

First consider a fine time grid (step=1/n), then proceed to the limit.

The probability of success on a Bernoulli trial is λ/n. By time t, we have

completed nt trials.

The probability that there is no success in a time period [0, t] is then(
1− λ

n

)nt
→ e−λt as n→∞ ,
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so that

P(T > t) = e−λt ,

and

P(T ≤ t) = 1− e−λt , t ≥ 0 , λ > 0 .

A continuous random variable T with such a cdf is called exponential, and we

write

T ∼ Exp(λ) .

The pdf of T can easily be calculated to be

fT (t) = λe−λt , t ≥ 0 , λ > 0 .

[Picture.]

Moments of the exponential distribution?
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Lack of memory property of the exponential distribution

Suppose that the life of a certain light bulb has an exponential distribution with a

mean life of 500 hours. Let T denote the life of this component. Then

P(T > t) =

∫ ∞
t

1

500
e−u/500du = e−t/500 .

Let t0 > 0. The probability that the light bulb lasts an additional t0 hours, given

that it has lasted t hours already...

P(T > t+ t0 | T > t) =
P(T > t+ t0)

P(T > t)
=
e−(t+t0)/500

e−t/500
= e−t0/500 = P(T > t0)

... is the same as the probability of lasting t0 hours when new!

This is what we refer to as the memoryless property of the exponential

distribution.

(Compare with the geometric distribution.)
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Gamma distribution

The Gamma distribution models the waiting time until the arrival of the r-th

occurrence of an event. As such, it is the continuous version of the negative

binomial distribution.

The expression of its density involves the Gamma function, defined as

Γ(t) =

∫ ∞
0

yt−1e−ydy , for t > 0 .

A RV X is said to have a Gamma distribution with parameters r > 0 and λ > 0 if

its pdf is given by

fX(x) =
λrxr−1

Γ(r)
e−λx , x ≥ 0 ,

and we write

X ∼ γ(r, λ) .
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Remarks:

(i) Γ(1) =
∫∞

0
e−ydy = 1. If t > 1,

Γ(t) =

∫ ∞
0

yt−1e−ydy

=
[
−yt−1e−y

]∞
0

+ (t− 1)

∫ ∞
0

yt−2e−ydy (IBP)

= (t− 1)

∫ ∞
0

yt−2e−ydy

= (t− 1)Γ(t− 1) .

(ii) Consequence: if n is a positive integer, then Γ(n) = (n− 1)!. For this reason,

the Gamma function is also called the generalized factorial.

(iii) fX ≥ 0 is indeed a pdf,∫∞
0
fX(x)dx = 1

Γ(r)

∫∞
0
λrxr−1e−λxdx = 1

Γ(r)

∫∞
0
yr−1e−ydy = 1.

(iv) Moments of the Gamma distribution: E(X) = r/λ, Var(X) = r/λ2.
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Normal distribution

Perhaps the most famous probability distribution. It is also known as the Gaussian

distribution.

Like the Poisson distribution, the normal distribution arises as a limit (as a

cumulative effect of a large number of small independent random factors).

Also, it possesses a number of unique properties which makes it easy to handle

(analytically), and very popular to model real phenomena.

Definition 20. A continuous random variable X with pdf

fX(x) =
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
, −∞ < x <∞ ,

is said to have a normal distribution with parameters µ and σ2 > 0, and we write

X ∼ N (µ, σ2) .

83



An important special case is N (0, 1), called the standard normal distribution. The

pdf of Z ∼ N (0, 1) is

fZ(x) := φ(x) =
1√
2π
e−x

2/2 , −∞ < x <∞ .

φ(x) is called the standard normal density.

The cdf of Z is

FZ(x) = Φ(x) =
1√
2π

∫ x

−∞
e−u

2/2du , −∞ < x <∞ .

Φ(x) is called the standard normal cdf.

Check that φ is a pdf indeed
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Note that φ(x) is an even (symmetric) function, φ(x) = φ(−x).

Thus

Φ(−x) = 1− Φ(x) .

Important: If for some constants µ ∈ R and σ > 0 and RVs Z ∼ N (0, 1) and

X = σZ + µ, then

FX(x) = P(X ≤ x)

= P(σZ + µ ≤ x)

= P(Z ≤ x− µ
σ

)

=

∫ (x−µ)/σ

−∞
φ(u)du ,
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and the pdf of X is thus

fX(x) =
dFX(x)

dx
=

(
x− µ
σ

)′
φ

(
x− µ
σ

)
=

1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
, x ∈ R ,

so that X ∼ N (µ, σ2).

Summarizing, we only need the standard normal pdf/cdf to evaluate any

probability for any normal RV:

If X ∼ N (µ, σ2) , then Z :=
X − µ
σ

∼ N (0, 1) .

µ is the location parameter and σ > 0 the scale parameter [→ connection with

moments?].
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Example 13. If X ∼ N (25, 36), find a constant c such that

P(|X − 25| ≤ c) = 0.9544 .

We want

P(−c ≤ X − 25 ≤ c) = P

(
− c

6
≤ X − 25

6
≤ c

6

)
= 0.9544 .

Thus

φ
( c

6

)
− φ

(
− c

6

)
= φ

( c
6

)
−
(

1− φ
( c

6

))
= 2φ

( c
6

)
− 1

= 0.9544 ,

so that φ
(
c
6

)
= 0.9772, and looking up tables gives c = 12.

87



Skewness and tail thickness

To summarize key features of a distribution so far, we have the mean, variance,

standard deviation, and the median. Why stop here? Higher order moments

provide further insight in the shape of a distribution.

The third central moment

ν3 = E
[
(X − µx)3

]
is an indicator of skewness. Indeed, if the distribution has a long positive tail, then

(X − µX)3 has large positive values but does not have large negative values.

Thus ν3 > 0 and the distribution is positively skewed. Similarly, if the distribution

has a long negative tail, ν3 < 0 and the distribution is negatively skewed.

Definition 21. The coefficient of skewness is obtained by standardising to remove

the scale effect

Skew(X) =
ν3

σ3
X

= E

(
X − µX
σX

)3

.
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Of course, if the pdf of X is symmetric, then Skew(X) = 0 since (x− µX)3fX(x)

is an odd function around µ. In particular

Z ∼ N (0, 1) , Skew(Z) = 0 .

The fourth central moment ν4 = E
[
(X − µX)4

]
is an indicator of the peakedness

and the length of the tails of a distribution.

Definition 22. The coefficient of kurtosis is obtained by standardising to remove

the scale effect

Kurt(X) =
ν4

σ4
X

− 3 .
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Why removing 3?

Let’s have a look at the value of ν4 for the N (0, 1) distribution. We derived

previously

E (Z4) = 3E (Z2) = 3 .

So, by removing 3 in the definition of kurtosis, we make the normal distribution a

reference distribution.

Z ∼ N (0, 1) , Kurt(Z) = 0 .

• If Kurt(X) < 0, the distribution is likely to be flatter, and have lighter tails

than N .

• If Kurt(X) > 0, the distribution is likely to be more peaked, and have heavier

tails than N .
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Pareto distribution

The Pareto distribution is a heavy-tailed distribution, meaning that its tails are

thicker than the normal distribution: large values are more likely to occur than

under a normal distribution model. The pdf and cdf of a Pareto distribution are

fX(x) =
αkα

xα+1

FX(x) = 1−
(
k

x

)α
,

for k ≤ x <∞ and k > 0, representing the lowest value X can take.

Under which condition is the mean of X finite? What about its variance? Well,

provided α > n,

E(Xn) =

∫ ∞
k

xn
αkα

xα+1
dx = αkα

∫ ∞
k

xn−α−1dx =
αkn

α− n
,

from which we get E(X) = αk/(α− 1) and Var(X) = αk2/[(α− 1)2(α− 2)].
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Functions of a continuous RV

One-to-one transforms

Let X be some RV with state space SX . We are interested in the distribution of

Y = g(X) (state space SY ), for some strictly increasing or decreasing function g.

We will learn two techniques for finding the distribution of Y , namely

(i) Distribution function technique

(ii) Change of variable technique

Let y ∈ SY . Suppose for now that g is strictly increasing. Then

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

= P(X ≤ g−1(y))

= FX(g−1(y)) .
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Example 14. A spinner is mounted at the point (0, 1). Let θ be the smallest

angle between the y-axis and the spinner. Assume that θ is the value of a random

variable Θ ∼ U(−π/2, π/2). Let (X, 0) be the intersection point of the x-axis and

the spinner. Find the pdf of X.

First, note that X = tan Θ, which takes values in SX = R (and Θ = arctan(X)).

The cdf of X is

FX(x) = P(X ≤ x) = P(Θ ≤ arctan(X))

= FΘ(arctan(x))

=
1

π

(
arctan(x) +

π

2

)
, −∞ < x <∞ .

Differentiating gives

fX(x) =
1

π(1 + x2)
, −∞ < x <∞ .

This distribution is known as the Cauchy distribution.
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We now generalize the procedure of the previous example. So far, we have for

y ∈ Sy and g strictly increasing,

FY (y) = FX(g−1(y)) =

∫ g−1(y)

x1

fX(u)du , where x1 < x < x2.

Differentiating this expression yields

fY (y) = F ′y(y) = fX(g−1(y))
dg−1(y)

dy
, y ∈ SY .

Similarly, if g is strictly decreasing,

fY (y) = F ′y(y) = −fX(g−1(y))
dg−1(y)

dy
, y ∈ SY .

In general, if g is a continuous monotonic function,

fY (y) = fX(g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣ , y ∈ SY .

This expression is referred to as the change of variable formula.
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Example 15. Suppose X has pdf fX(x) = 3(1− x)2 for 0 < x < 1 and 0

elsewhere. Find the pdf of Y = (1−X)3.

(i) g(x) = (1− x)3 which is strictly decreasing on (0, 1).

(ii) The domain 0 < x < 1 is mapped onto 0 < y < 1.

(iii) Inverse transform is X = 1− Y 1/3 = g−1(Y ), so that g−1(y) = 1− y1/3.

(iv) The change of variable technique gives

fY (y) = fX(g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣
= 3

(
1− (1− y1/3)

)2

·
∣∣∣∣−1

3
y−2/3

∣∣∣∣
=
(

1− 2(1− y1/3) + (1− y1/3)2
)
y−2/3

= 1 (after simplifications).

So that Y ∼ U(0, 1).
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Non monotonic transforms

The distribution function technique is highly recommended for this situation. Do

not use the change of variable formula!

The idea is to partition SY into intervals over which g is monotonic.

Example 16. Let X have the pdf fX(x) = x3/3 for −1 < x < 2. Find the pdf of

Y = X2.

(i) The support of Y is 0 ≤ y < 4.

(ii) For 0 ≤ y < 1, the cdf of Y is

FY (y) = P(X2 ≤ y)

= P(−√y ≤ X ≤ √y)

=

∫ √y
−√y

x2

3
dx

=
2

9
y3/2 .
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(iii) For 1 ≤ y < 4, the cdf of Y is

FY (y) = P(X2 ≤ y)

= P(−1 ≤ X ≤ √y)

=

∫ √y
−1

x2

3
dx

=
1

9
y3/2 +

1

9
.

(iv) Therefore, the pdf of Y is

fY (y) = F ′Y (y) =


√
y/3 if 0 ≤ y < 1
√
y/6 if 1 ≤ y < 4 .

[Picture.]
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Bivariate distributions

A random variable X = X(ω) is a measurement of the outcome ω. In many

situations, we are interested in more than one measurement. For example,

Patient: age, sex, weight,...

Wind: speed, direction,...

In the simplest case, these two measurements are two numerical characteristics of

an outcome pair

(X,Y ) = (X(ω), Y (ω)) ∈ R2 .

(X,Y ) is called a bivariate random variable.

Example 17. Toss a coin twice and let

X = number of heads in the first toss (0 or 1)

Y = total number of heads (0, 1 or 2)

How to describe the (joint) distribution of (X,Y )?

98



Discrete bivariate distributions

(X,Y ) can only take values (x1, y1), (x2, y2), . . .. Denote by SX,Y the set of all

possible values that the pair (X,Y ) can take [the state space]. In Example 18,

SX,Y = {(0, 0), (1, 1), (0, 1), (1, 2)}.

Definition 23. Let (X,Y ) be a discrete bivariate RV with state space SX,Y . The

joint pmf of (X,Y ) is defined as

pX,Y (x, y) = P(X = x, Y = y) ,

and satisfies the same properties as the pmf of a univariate RV:

(i) 0 ≤ pX,Y (x, y) ≤ 1.

(ii)
∑∑

(x,y)∈SX,Y pX,Y (x, y) = 1.

(iii) P((X,Y ) ∈ B) =
∑∑

(x,y)∈B pX,Y (x, y), for B ⊂ SX,Y .
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Definition 24. The joint cdf of X and Y is defined as

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

=
∑

j | xj≤x

∑
j | yj≤y

P(X = xj , Y = yj)

=
∑

j | xj≤x

∑
j | yj≤y

pX,Y (xj , yj) .

Recall, for a univariate random variable X with cdf FX we have

P(a < X ≤ b) = FX(b)− FX(a) .

What about bivariate distribution?

Instead of intervals, we have rectangles...
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c

b

d

y

x

- - +

P(a < X ≤ b, c < Y ≤ d) = FX,Y (b, d)−FX,Y (b, c)−FX,Y (a, d)+FX,Y (a, c) ≥ 0 .
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From the bivariate cdf FX,Y , we can get the marginal univariate cdfs FX and FY .

The joint behaviour of X and Y contains information about individual

behaviours...

FX(x) = P(X ≤ x)

= P(X ≤ x, Y <∞)

= lim
y→∞

P(X ≤ x, Y < y)

= lim
y→∞

FX,Y (x, y)

= FX,Y (x,∞) .

Similarly

FY (y) = FX,Y (∞, y) .

But not the other way around! Knowing individual behaviours provides absolutely

no information about how X and Y are related!

Note: FX,Y (−∞, y) = FX,Y (x,−∞) = 0.
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Definition 25. Let (X,Y ) be a discrete bivariate RV with space SX,Y . The

marginal pmf of X is defined by

pX(x) = P(X = x)

=
∑
y

P(X = x, Y = y)

=
∑
y

pX,Y (x, y) , s ∈ SX .

The sums run over values of y such that (x, y) ∈ SX,Y .

Similarly for Y .
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Independence

Recall, for events A and B, independence is defined as P(A ∩B) = P(A)P(B).

Similarly, X and Y are said independent if

FX,Y (x, y) = FX(x)FY (y) .

In other words, events {X ≤ x} and {Y ≤ y} are independent for all x, y.

If FX,Y (x, y) = FX(x)FY (y) holds, then for any sets M,N ⊂ R,

P(X ∈M,Y ∈ N) = P(X ∈M)P(Y ∈ N) ,

that is, any events A and B such that A is defined in terms of X

(A = {X ∈M}) and B in terms of Y (B = {Y ∈ N}) are independent.

For discrete RVs

X and Y are independent ⇔ pX,Y (x, y) = pX(x) pY (y)

Proof?
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Example 18. Roll a pair of unbiased dice. Let X be the smaller and Y the larger

outcome on the dice.

The set of possible values is

SX,Y = {(1, 1), . . . , (1, 6), (2, 2), . . . , (2, 6), . . . (6, 6)}

= {(x, y) | x ≤ y, x = 1, . . . , 6 and y = 1, . . . , 6} .

The joint distribution of X and Y is

pX,Y (x, y) =

1/36 if 1 ≤ x = y ≤ 6

2/36 if 1 ≤ x < y ≤ 6 ,

where x and y are integer.

What about marginal distributions? First,

SX = SY = {1, 2, 3, 4, 5, 6} .
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We have, for example,

pX(4) = P(X = 4)

= pX,Y (4, 4) + pX,Y (4, 5) + pX,Y (4, 6)

= 5/36 .

and

pY (4) = P(Y = 4)

= pX,Y (1, 4) + pX,Y (2, 4) + pX,Y (3, 4) + pX,Y (4, 4)

= 7/36 .

For X and Y to be independent, we need pX,Y (x, y) = pX(x) pY (y) for all x, y.

Clearly X and Y are not independent since

pX,Y (4, 4) = 1/36 6= pX(4) pY (4) .

106



Example 19. Let the joint pmf of X and Y be

pX,Y (x, y) =
x y2

30
, x = 1, 2, 3 and y = 1, 2 .

The marginal pmfs are

pX(x) =
2∑
y=1

x y2

30
=
x

6
, x = 1, 2, 3 .

pY (y) =
3∑

x=1

x y2

30
=
y2

5
, y = 1, 2 .

And for all (x, y) ∈ SX,Y ,

pX,Y (x, y) =
x

6

y2

5
= pX(x) pY (y) .

⇒ X and Y are independent.
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Continuous bivariate distributions

Definitions are the same as in the discrete case, except that
∫

replace
∑

.

In particular, the joint probability density function (joint pdf) of two continuous

random variables X and Y is an integrable function fX,Y (x, y) satisfying

(i) fX,Y (x, y) ≥ 0.

(ii)
∫ ∫

fX,Y (x, y)dxdy = 1.

(iii) P((X,Y ) ∈ B) =
∫ ∫

B
fX,Y (x, y)dxdy for B ⊂ R2.

The joint cdf of X and Y is

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

=

∫ y

−∞

∫ x

−∞
fX,Y (u, v) du dv

=

∫ x

−∞

∫ y

−∞
fX,Y (u, v) du dv .
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The joint pdf fX,Y (x, y) satisfies

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
=

∂

∂y

(
∂FX,Y (x, y)

∂x

)
=

∂

∂x

(
∂FX,Y (x, y)

∂y

)
,

if the partial derivatives exist.

Recall, if X is a univariate RV, then

fX(x) =
dFX(x)

dx
≈ 1

h
P(x− h/2 ≤ X ≤ x+ h/2) ,

so that

P(X ∈ small interval around x) ≈ fX(x)× (length of the interval).

What about in the bivariate case? Interpretation of fX,Y (x, y)?
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Similarly,

fX,Y (x, y) =
∂

∂x

(
∂FX,Y (x, y)

∂y

)
,

where
∂FX,Y (x, y)

∂y
≈ 1

h
[F (x, y + h/2)− F (x, y − h/2)] .

Thus fX,Y (x, y) is roughly equal to

1

h

[
F (x+ h

2 , y + h
2 )− F (x− h

2 , y + h
2 )

h
−
F (x+ h

2 , y −
h
2 )− F (x− h

2 , y −
h
2 )

h

]
.

Rearranging terms gives (cf slide 6)

fX,Y (x, y) ≈ P

(
x− h

2
< X ≤ x+

h

2
, y − h

2
< Y ≤ y +

h

2

)
,

and we see that

P((X,Y ) ∈ small set around (x, y)) ≈ fX,Y (x, y)× area of this small set .
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For a large set, we just integrate the pdf over this set. If a < b and c < d,

P(a < X ≤ b, c < Y ≤ d) =

∫ b

a

∫ d

c

fX,Y (x, y)dxdy .

The marginal pdfs of X and Y are respectively

fX(x) =

∫
fX,Y (x, y)dy

fY (y) =

∫
fX,Y (x, y)dx .

Of course, we can talk about independent RVs in the continuous case as well, and

we have the following result

X and Y are independent ⇔ fX,Y (x, y) = fX(x) fY (y) for all (x, y) ∈ SX,Y .
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Mathematical expectations of ψ(X, Y )

Let (X,Y ) be a (discrete or continuous) bivariate RV, and ψ(x, y) a function in R.

Extending the definition of expectation involving a single RV, we get

Eψ(X,Y ) =
∑∑

ψ(x, y) pX,Y (x, y) ,

if (X,Y ) is discrete, and

Eψ(X,Y ) =

∫ ∫
ψ(x, y) fX,Y (x, y) dx dy ,

if (X,Y ) is continuous.

(provided the sums or integrals converge..)
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Example 20. Let

(X,Y ) =


(−1, 0) with probability1/3

(1, 0) with probability1/3

(0, 1) with probability1/3 .

Then XY = 0 always so E (XY ) = 0. Moreover,

E (X) = −1 · (1/3) + 0 · (1/3) + 1 · (1/3) = 0, so that E (XY ) = E (X)E (Y ).

But if X = 0, then Y = 1 always, so that X and Y are not independent.
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Exercise 12. Let X and Y have the joint pdf

fX,Y (x, y) = 2 , 0 ≤ x ≤ y ≤ 1 .

The support of X and Y is not rectangular, so that X and Y are not

independent. Find P
(
X ≤ 1

2

)
, E (X) and E (Y ).
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Covariance and correlation coefficient

Here we discuss tools for describing the relationship between two random variables

X and Y .

Definition 26. The covariance of X and Y is

σX,Y = Cov(X,Y ) = E [(X − µX)(Y − µY )] ,

where µX = E (X), and µY = E (Y ).

It is sometimes more convenient to work with

Cov(X,Y ) = E (XY − µXY − µYX + µXµY ) ,

= E (XY )−E (µXY )−E (µYX) + µXµY ,

= E (XY )−E (X)E (Y ) .

Note that Cov(X,X) = Var(X) and Cov(X,Y ) = Cov(Y,X).
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What does the value of Cov(X,Y ) indicate?

x

y

μx

μy

(X-μx)(Y-μy)>0

(X-μx)(Y-μy)>0

(X-μx)(Y-μy)<0

(X-μx)(Y-μy)<0

• If a large positive/negative value of X makes a large positive/negative value

of Y more likely, there is a positive relationship between X and Y and

Cov(X,Y ) > 0.

• If a large positive/negative value of X makes a large negative/positive value

of Y more likely, there is a negative relationship between X and Y and

Cov(X,Y ) < 0.
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So Cov(X,Y ) is an ‘indicator’ of relationship between X and Y , and also scale.

Its size depends on the scale (variance) of the two variables, and thus has no

upper or lower boundary.

Covariance provides the direction of the relationship.

To remove the scale effect, we need to standardize the covariance,

Definition 27. The correlation coefficient of X and Y is

ρ =
Cov(X,Y )√

Var(X)Var(Y )
=

σX,Y
σX σY

.

We will show later that −1 ≤ ρ ≤ 1. The correlation coefficient provides

information about the direction and strength of the relationship between the

variables.
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Remark: The variance of X + Y in the general case is

Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y ) .

Indeed,

Var(X + Y ) = E
[
(X + Y − (µX + µY ))2

]
= E (X − µX)2 + 2E (X − µX)(Y − µY ) + E (Y − µY )2

= Var(X) + Var(Y ) + 2 Cov(X,Y ) .

Definition 28. If ρ = 0 (equiv. Cov(X,Y ) = 0), the variables X and Y are said

to be uncorrelated.

With this definition, we have

If X and Y are uncorrelated, then Var(X + Y ) = Var(X) + Var(Y ).
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Properties of covariance and correlation

(i) Let a ∈ R, then Cov(X, a) = E (X − µX)(a− a) = 0.

(ii) Let a, b ∈ R

Cov(aX, bY ) = E [(aX − aµx)(bY − bµY )]

= a bE (X − µX)(Y − µY )

= a bCov(X,Y ) .

(iii)

Cov(X + a, Y + b) = E [(X + a− (µX + a))(Y + b− (µY + b))]

= Cov(X,Y ) .

(iv)

Cov(X, aX + b) = E [(X − µX)(aX + b− (aµX + b))]

= E [(X −muX) a (X − µX)] = aVar(X) .
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Correlation and independence

Suppose X and Y are two independent continuous RVs, anf g and h two

functions. Then fX,Y (x, y) = fX(x)fY (y) and

E [g(X)h(Y )] =

∫ ∫
g(x)h(y)fX(x)fY (y)dxdy

=

(∫
g(x)fX(x)dx

)
·
(∫

h(y)fY (y)dy

)
= E (g(X))E (h(Y )) .

Thus, if X and Y are independent, then E [g(X)h(Y )] = E (g(X))E (h(Y )). In

particular, E (XY ) = E (X)E (Y ).

Moreover, take g(x) = (x− µX) and h(y) = (y − µY ), we get

E (X − µX)(Y − µY ) = 0 = Cov(X,Y ) .
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We just showed that

X and Y are independent ⇒ X and Y are uncorrelated

However, in general the converse is not true..

Example 21. Let X and Y have the joint pmf

pX,Y (x, y) = 1/3 for (x, y) = (0, 1), (1, 0), (2, 1) .

Since the support is not ‘rectangular’, X and Y must be dependent. However,

µX = 1, µY = 2/3, and Cov(X,Y ) = E (XY )− 2/3 = 0. So X and Y are

uncorrelated even though they are not independent.
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We have the following important result

Theorem 4. The correlation coefficient ρ is always between -1 and 1

|ρ| ≤ 1 .

Moreover, ρ measures the amount of linear relationship between two RVs.
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What happens when ρ = ±1?

In that case, g(a∗, b∗) = 0 = E[(Y − a∗X − b)2]. Since (Y − a∗X − b)2 ≥ 0,

then necessarily Y = a∗X + b∗ (linear relationship).

Y = ρ
σY
σX

(X − µX) + µY if ρ = ±1 .

X[, 1]

ρ = −1

X[, 1]

X
[, 

2]

ρ = 0

ρ = 0.75

X
[, 

2]

ρ = 1
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Conditional distributions

For discrete random variables X and Y with joint pmf pX,Y (x, y), and events

A = {X = x} and B = {Y = y}, what is the probability of occurrence of A

knowing that B occurs? Sounds familiar..

P(A | B) = P(X = x | Y = y) =
P(A ∩B)

P(B)
=

P(X = x, Y = y)

P(Y = y)
.

Hence the definition

Definition 29. The conditional pmf of X given Y = y is

pX|Y (x | y) =
pX,Y (x, y)

pY (y)
.

Similarly, we have

pY |X(y | x) =
pX,Y (x, y)

pX(x)
.
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Note that for a fixed y, pX|Y (x | y) regarded as a function of x, satisfies all the

properties of a pmf,

(i) pX|Y (x | y) ≥ 0.

(ii)
∑
x∈SX pX|Y (x | y) = 1.

(iii) P(a < X < b | Y = y) =
∑
x| a<x<b pX|Y (x | y),

and similarly for pY |X(y | x), regarded as a function of y.

Definition 30. The conditional mean of X given Y = y is

E(X | Y = y) =
∑
x∈SX

x pX|Y (x | y) = a function of y =: η(y) .

The conditional variance of X given Y = y is

Var(X | Y = y) =
∑
x∈SX

x2 pX|Y (x | y)− (E(X | Y = y))2 = a function of y =: ζ(y) .
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Remarks:

(i) If ψ and φ are two functions in R, then

E(ψ(X) | Y = y) =
∑
x∈SX

ψ(x) pX|Y (x | y) .

E(φ(Y ) | X = x) =
∑
y∈SY

φ(y) pY |X(y | x) .

(ii) Back to independence.

Recall, events A and B are independent iff P(A ∩B) = P(A)P(B) or, using

conditional probability, P(A | B) = P(A).

Similarly, if X and Y are independent, then pX|Y (x | y) = pX(x) and

pY |X(y | x) = pY (y).

Thus E(ψ(X) | Y = y) = E(ψ(X)).
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If X and Y are continuous RVs, the situation is more tricky. What is the

conditional distribution of X given Y = y? The event {Y = y} has zero

probability..

P(X ≤ x, | Y = y) =
P(X ≤ x, Y = y)

P(Y = y)
=

0

0
= . . . .

In fact, we can make the above meaningful by taking small intervals

Conditional Proba =
P
(
x− h

2 < X ≤ x+ h
2 , y −

h
2 < Y ≤ y + h

2

)
P
(
y − h

2 < Y ≤ y + h
2

)
≈ fX,Y (x, y)h2

fY (y)h

=
fX,Y (x, y)

fY (y)
h .

Which leads to the following definition.
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Definition 31. The conditional pdf of X given Y = y is defined by

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
.

Remarks:

(i) The conditional cdf is FX|Y (x | y) =
∫ x
−∞ fX|Y (u | y)du.

(ii) The conditional mean is E (X |Y = y) =
∫
x fX|Y (x | y)dx.

(iii) The conditional variance Var(X|Y = y) = E(X2 |Y = y)− (E(X |Y = y))2.
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Two important properties

(i) Tower property

E (X) = E (E (X |Y ))

E (Y ) = E (E (Y |X)) .

(ii) Conditional variance

Var(X) = E (Var(X |Y )) + Var(E (X |Y )) .

Var(Y ) = E (Var(Y |X)) + Var(E (Y |X)) .
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Exercise 13. The number of emissions from a radioactive source that occur in

the time period [0, t] follows a Poisson distribution with parameter λ. Each of the

emissions is detected by a Geiser counter with probability p, or missed with

probability (1− p). What is the expected number of emissions detected in [0, t]?
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Bivariate normal distribution

Definition 32. If the pdf of (X,Y ) is given by

φρ(x, y) := fX,Y (x, y) =
1

2π
√

1− ρ2
exp

{
−1

2

x2 − 2ρxy + y2

1− ρ2

}
,

where |ρ| < 1, then we say that (X,Y ) has the standard bivariate normal

distribution with parameter ρ, and we write

(X,Y ) ∼ N2(ρ) .

Check: marginal distribution of Y ?

fY (y) =

∫
fX,Y (x, y)dx

=
1

2π
√

1− ρ2

∫
exp

{
−1

2

x2 − 2ρxy + y2

1− ρ2

}
dx
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fY (y) =
1

2π
√

1− ρ2
e−y

2/2

∫
exp

{
−1

2

x2 − 2ρxy + ρ2y2

1− ρ2

}
dx .

Let u = (x− ρy)/
√

1− ρ2. Then

fY (y) =
1√
2π

1

2π
e−y

2/2

∫
e−u

2/2
√

1− ρ2du

=
1

2π
e−y

2/2

∫
e−u

2/2du

=
1

2π
e−y

2/2 .

Thus

X ∼ N (0, 1) .

Y ∼ N (0, 1) .

Good. But then, is the converse true? No!
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Example 22. Let X ∼ N (0, 1) and

Y =

X with probability 1/2

−X with probability 1/2 ,

then Y ∼ N (0, 1) but (X,Y ) is not bivariate normal since the bivariate pdf is

non-zero only on the lines y = ±x.

So what? The joint structure is not fixed by the normal marginal distributions (as

expected). But then, what does the N2(ρ) look like? Why this choice?

The contours of φρ(x, y) are ellipses with axes inclined at an angle π/4 to the x

and y axes.

If ρ > 0, then the major axis lies along y = x and the minor axis along y = −x.

This means that X and Y tend to be large together, and small together: they are

positively related.

If ρ < 0, then it is the other way around. X and Y are negatively related. [Sounds

familiar?]
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Plots of the density N2(ρ) for different values of ρ.

x

y

z

0

x

y

z

0.8

x

y

z

−0.8

x

y

z

1
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What about the conditional pdf of X given Y = y?

fX|Y (x | y) =
1

2π
√

1− ρ2
exp

{
−1

2

x2 − 2ρxy + y2

1− ρ2

}√
2πey

2/2

=
1

√
2π
√

1− ρ2
exp

{
−1

2

x2 − 2ρxy + ρ2y2

1− ρ2

}
=

1
√

2π
√

1− ρ2
exp

{
−1

2

(x− ρy)2

1− ρ2

}
.

Still normal! Good.

X |Y = y ∼ N (ρy, 1− ρ2) .

E (X |Y = y) = ρy .

Note that if ρ = 0, then

φ0(x, y) =
1

2π
exp

{
−1

2
(x2 + y2)

}
= fX(x) fY (y) .

X and Y are independent!
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What is the meaning of ρ?

Since E (X |Y = y) = ρy, we have E (X |Y ) = ρY and

E (XY ) = E (E (X |Y )) = E (ρ Y ) = ρE (Y ) = ρ ,

so

correlation coefficient =
E (XY )

σX σY
= ρ .

ρ is the correlation coefficient between X and Y (not surprising, right?). We have

proved the following result

Theorem 5. If X and Y have a bivariate normal distribution with correlation

coefficient ρ, then

X and Y are independent ⇔ ρ = 0 .

Important. This is not true in general, but only for the bivariate normal case: in

general, zero correlation does not imply independence.
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The N2(ρ) distribution can be generalised to allow more flexibility. A nice way to

do so is to shift the center of the bivariate distribution, and to rotate and

stretch/squeeze the main axes of the pdf. If (X,Y ) have pdf

1

2πσXσY
√

1− ρ2
exp

−1

2

(
x−µX
σX

)2

− 2ρ
(
x−µX
σX

)(
y−µY
σY

)
+
(
y−µY
σY

)2

1− ρ2

 ,

with µX , µY ∈ R, σX , σY > 0, |ρ| < 1.

In this case we write

(X,Y ) ∼ N2(µX , µY , σX , σY , ρ) .
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What is the meaning of the parameters?

We can show that

X ∼ N (µX , σX) and Y ∼ N (µY , σY ) ,

and ρ is the correlation coefficient, so that Cov(X,Y ) = ρ σXσY .

Remark: Standardization of the general bivariate RV.

If (X,Y ) ∼ N2(µX , µY , σX , σY , ρ), then(
X − µX
σX

,
Y − µY
σY

)
∼ N2(ρ) .
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The expression of the bivariate normal distribution in its general form given

previously is messy. It is a good idea at this point to introduce matrix notation. It

will simplify our lives, and it will be helpful to generalise the bivariate case to the

multivariate case..

We introduce the covariance matrix

Σ =

 σ2
X ρ σXσY

ρ σXσY σ2
Y

 =

 Var(X) Cov(X,Y )

Cov(X,Y ) Var(Y )

 .

It plays the role of σ2 for univariate distributions. Then

Σ−1 =
1

σ2
Xσ

2
Y (1− ρ2)

 σ2
Y −ρ σXσY

−ρ σXσY σ2
X

 ,

and

det(Σ) = σ2
Xσ

2
Y (1− ρ2) .

139



Next, we introduce the mean vector

µ =

 µX

µY


and

X =

 X

Y

 .

Then the bivariate normal distribution has the form

fX(x, y) =
1

2π
√

det(Σ)
exp

{
−1

2
(X− µ)tΣ−1(X− µ)

}
.

How would you generalize this expression if X had n components?
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Random sample

We started this course with a definition of a Random Experiment. One of the key

features of a RE is that it can be repeated many times under the same conditions.

Each time you run an experiment, you obtain an (independent) observation of a

random variable X. After n experiments, we thus obtain measures of several RVs

X1, X2, . . . , Xn .

We call X1, . . . , Xn a random sample (RS) of size n. Each Xi is a copy of a

generic X, i.e. they have the same distribution.

Product spaces come handy when dealing with repeated experiments. For two sets

A and B, their product is defined as A×B := {(a, b) | a ∈ A, b ∈ B}, and

similarly, An := A× . . .×A = {(a1, . . . , an) | aj ∈ A, j = 1, 2, . . . , n}. Thus, the

sample space of a RE is Ωn, if Ω denotes the sample space of one experiment.

Note that Probability Theory has ways to deal with an infinite number of

experiments too. It is necessary when dealing with convergence results [later].
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Assumption: X1, . . . , Xn are independent of each other and identically distributed

(and we write i.i.d.).

We usually say that X1, . . . , Xn is a RS or i.i.d. to refer to the same assumption

of independence and identical distribution.

Let the pdf/pmf of Xi be fXi(xi), taking values in S. Then the joint pdf/pmf of

the RS under the independence assumption is

fX1,...,Xn(x1, . . . , xn) = fX1
(x1) . . . , fXn(xn) , xi ∈ S for i = 1, . . . , n .

Let X1, . . . , Xn be a RS. We introduce the sample mean

X̄ =
1

n

n∑
i=1

Xi ,

and the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 .
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First of all, note that both X̄ and S2 are RVs! [Are they independent of each

other?] What is the mean of X̄?

Well, note that if X1, . . . , Xn are n independent RVs with respective means

µ1, . . . , µn and variances σ2
1 , . . . , σ

2
n, then the mean and variance of

Y =
∑n
i=1 aiXi, with ai ∈ R are µY =

∑n
i=1 ai µi and σ2

Y =
∑n
i=1 a

2
i σ

2
i .

This result is obvious for the mean. For the variance, note that independence

implies uncorrelated, and thus all the covariance terms vanish,

Var(Y ) = E (Y − µY )2 = E

(∑
i

ai (Xi − µi)

)2

= E
∑
i

∑
j

ai aj (Xi − µi)(Xj − µj)

=
∑
i

∑
j

ai aj E (Xi − µi)(Xj − µj)

=
∑
i

a2
iE (Xi − µi)2 =

∑
i

a2
i σ

2
i .
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Back to the sample mean,

E (X̄) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E (Xi) = µX .

We say that X̄ is an unbiased estimator of the mean of X. Likewise, it is possible

to show (and not very hard) that S2 is an unbiased estimator of the variance of

X. What about the variance of X̄?

Good stuff. However, we want to derive further properties of these estimators

(what is their [exact and approximate] distribution? How ‘good’ are these two

estimators? Can we do better in some sense?).

Note that they both involves sums of random variables. We are thus naturally

lead to the study of the distribution properties of sums of i.i.d. RVs. Before we

can proceed further, we need to introduce a powerful tool to deal with sums of

RVs: the moment generating function.
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Moment generating function

Definition 33. Let X be a discrete RV (resp. continuous RV) with pmf pX(x)

(resp. with pdf fX(x)) and state space SX . The moment generating function or

mgf of X, if it exists, is

MX(t) = E (etX) =


∑
x∈SX e

tx pX(x) if X is discrete∫
x∈SX e

tx fX(x) dx if X is continuous ,

for −h < t < h, for some positive number h.

An important result is that the pmf uniquely determines the mgf, and that the

mgf uniquely determines the pmf/pdf. In other words,

pX(x) = pY (x) ⇔ MX(t) = MY (t) ,

and similarly in the continuous case. Mgfs thus provide another tool for describing

the distribution of a RV. However, the mgf may not exist for some RVs, while the

pmf/pdf always exists [well, this is not completely true, but that will do].
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Example 23. Let X be a RV with mgf

MX(t) =
et/2

1− et/2
, t < ln(2) .

What is the pmf of X? Recall that in a neighborhood of 0, the Maclaurin’s series

expansion of (1− z)−1 is

1

1− z
= 1 + z + z2 + z3 + . . . − 1 < z < 1 .

Therefore, for t < ln(2),

MX(t) =
et

2

(
1− et

2

)−1

=
et

2

(
1 +

et

2
+
e2t

22
+
e3t

23
+ . . .

)
=

1

2
et +

1

22
e2t +

1

23
e3t + . . .

We see that SX = {1, 2, 3, . . .}, and that

P(X = x) =
1

2x
, x = 1, 2, 3, . . .
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What about its name? Moment generating function..

Recall the expansion

ex =
∞∑
k=0

xk

k!
, ∀x ∈ R .

OK. So let’s expand the exponential inside the expectation:

MX(t) = E

( ∞∑
k=0

(tX)k

k!

)
=
∞∑
k=0

E (Xk)
tk

k!
.

Moments appear in its expansion! Hence its name.

Next, consider derivatives (with respect to t, of course) of the mgf

M ′X(t) =

( ∑
x∈SX

etx pX(x)

)′
=
∑
x∈SX

x etx pX(x) ,

so that

M ′X(0) =
∑
x∈SX

x e0·x pX(x) =
∑
x∈SX

x pX(x) = E (X) .
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Similarly,

M ′′X(0) =
∑
x∈SX

x2 pX(x) = E (X2) .

More generally, the r-th derivative of the mgf evaluated at 0 gives the r-th

moment of X, M
(r)
X (0) = E (Xr).

The same results hold in the continuous case as well.

Another useful property: if X1, . . . , Xn are independent RVs, then the mgf of the

sum Y = X1 + . . .+Xn is

MY (t) = E (etY ) = E (et(X1+...+Xn))

= E (etX1 . . . etXn)

= E (etX1)× . . .×E (etXn)

= MX1(t)× . . .×MXn(t) .
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A corollary of the previous result is that if X1, . . . , Xn is a RS from a distribution

with mgf M(t), then

(i) mgf of Y =
∑n
i=1Xi is MY (t) = (M(t))n.

(ii) mgf of X̄ is MX̄(t) = (M(t/n))n.
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Example 24. Let X1, . . . , Xn be a RS from the normal distribution N (µ, σ2).

Then the distribution of the sample mean X̄ is N (µ, σ2/n).

Indeed,

MXi(t) = exp

(
µ t+

1

2
σ2 t2

)
, i = 1, . . . , n .

Thus

MX̄(t) = (MX(t/n))n =

[
exp

(
µ t/n+

1

2
σ2 t

2

n2

)]n
= exp

(
µ t+

1

2

σ2

n
t2
)
,

and we recognize the mgf of a N (µ, σ2/n) random variable.
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Example 25. Suppose Xi ∼ B(p), and that the Xi’s are independent of each

other. Note that

MXi(t) = (1− p) + p et .

The mgf of Y = X1 + . . .+Xn is thus

MY (t) = ((1− p) + p et)n ,

the mgf of a Bi(n, p). Indeed, if Z ∼ Bi(n, p),

MZ(t) =
n∑
z=0

(
n

z

)
etz pz (1−p)n−z =

n∑
z=0

(
n

z

)
(pet)x (1−p)n−z = ((1−p)+p et)n .
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Inequalities

Computing the mean and variance of sums of independent RVs is relatively

straightforward. In fact, it is much simpler than computing the actual distribution

of the sum. However, as we shall see, means and variances can give us some

quantitative information about the probabilities themselves.

Markov Inequality. Let X be a non-negative RV. Then, for all x > 0,

P(X ≥ x) ≤ E (X)

x
.

Chebyshev Inequality If µ = E (X) and σ2 = Var(X), then

P(|X − µ| ≥ x) ≤ σ2

x2
, x > 0 .
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Of course, you would expect these inequalities to be very crude, as they only make

use of the first two moments. And this is indeed the case, we can get much better

bounds, for example using higher order moments, or E (eλX). For example, if

X ∼ N (µ, σ),

k = 1 P(|X − µ| ≥ σ) ≤ 1 0.3174

k = 2 P(|X − µ| ≥ 2σ) ≤ 1
4 0.0456

k = 2 P(|X − µ| ≥ 3σ) ≤ 1
9 0.0027

But still, it can be useful..
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Convergence in probability and the LLN

Let X1, . . . , Xn be a RS from a distribution with mean µ and variance σ2. We

know that

E (X̄) = µ Var(X̄) =
σ2

n
.

Applying Chebyshev inequality to the sample mean X̄, we have for all ε > 0,

P(|X̄ − µ| ≥ ε) ≤ Var(X̄)

ε2
=

σ2

n ε2
.

Therefore,

0 ≤ lim
n→∞

P(|X̄ − µ| ≥ ε) ≤ lim
n→∞

σ2

n ε2
= 0 ,

which implies that

lim
n→∞

P(|X̄ − µ| ≥ ε) = 0 .
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Equivalently,

∀ε > 0 lim
n→∞

P(|X̄ − µ| ≤ ε) = 1 .

One says: X̄ converges to µ in probability as n→∞, and we write

X̄
P→ µ .

This fact is known as the Law of Large Numbers (LLN).

Back to frequency interpretation of probability

Let A be some event, and Aj =”event A occurs in the j-th replication of simple

experiment”. Consider

Xj = 1(Aj) =

1 if Aj occurs

0 otherwise .
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Then

X̄ =
1

n
(X1 + . . .+Xn) =

1

n
(1(A1) + . . .+ 1(An)) =

nA
n
.

Moreover,

E (Xj) = E (1(Aj)) = P(Aj) =: p

(event Aj occurs with probability p). Then LLN says that

∀ε > 0 P
(∣∣∣nA

n
− p
∣∣∣ > ε

)
→ 0 as n→∞.

Wow! Our probability theory reproduced the main empirical fact about random

experiments: the convergence of relative frequencies. We began this course by

saying we would like to model just that..
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Convergence in distribution and the CLT

The main use of moment generating functions is not for computing moments of

RVs, but in deriving approximations to the distribution of various complex objects,

e.g. sums Sn = X1 + . . .+Xn.

We have already mentioned that mgfs uniquely determine the distribution/law of a

RV. In fact, it’s even better than that! When mgf MX(t) is close to mgf MY (t) as

a function, one can show that the distribution of X will be close to that of Y . If

MXn →MX(t) as n→∞ ,

then

FXn(x)→ FX(x) for all x such that FX(x) = FX(x− 0) ,

and one says

“Xn converges to X in distribution”,

and we write

Xn
d→ X .
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This is another kind of convergence of RVs. In fact, one can show that

convergence in probability implies convergence in distribution, but the converse is

not true in general.

LLN revisited. Let X1, . . . , Xn be i.i.d. RVs and Sn = X1 + . . .+Xn. Denoting

E (X) = µ,
Sn
n

d→ µ as n→∞ .

Now, we look at the LLN through a magnifying glass.

Central Limit Theorem (CLT). Let X1, . . . , Xn be i.i.d. RVs and

Sn = X1 + . . .+Xn. If E (X) = µ and finite Var(X) = σ2 > 0, then

Sn − nµ
σ
√
n

d→ N (0, 1) as n→∞ .

In words, for large n, Sn
d
≈ N (nµ, nσ2), or X̄

d
≈ N (µ, σ2/n).
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Remarks.

(i) We have learnt from example 25 that if X1, . . . , Xn is a RS from the

N (µ, σ2/n) distribution, then

X̄ ∼ N (µ, σ2/n) and
X̄ − µ
σ/
√
n
∼ N (0, 1) .

Of course, these two results do not hold for general underlying distributions,

but the CLT tells us that they still approximately hold if the sample size is

large enough. Hence the special status of the normal distribution in the pool

of distribution functions! The quality of the approximation will depend on the

underlying probability distribution. Usually, take n > 25 or 30, but n can be

much smaller if the distribution is symmetric and smooth. In any case,

X̄
d
≈ µ+

σ√
n
Z Z ∼ N (0, 1) .

The second term σ√
n
Z is a random error, and typical values are of order

≈ n−1/2.
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(ii) The condition of independence between RVs can be relaxed to some extent

without affecting the validity of the CLT.

(iii) The LLN only assumes finite mean. The CLT assumes finite variance as well.

(iv) In more advanced probability courses, we can also investigate the rate of

convergence involved in the CLT, provided the third order moment is finite.

[→ Berry-Esseen Theorem.]

And more, if higher order moments are finite! [→ Edgeworth expansions.]
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Example 26. Let X̄ be the mean of a RS of size n = 25 from a distribution

whose pdf if

fX(x) =
x3

4
, 0 < x < 2 .

Then

µX =

∫ 2

0

x
x3

4
dx =

[
x5

20

]2

0

= 1.6 , σ2
X =

∫ 2

0

(x− 8/5)2 x
3

4
dx = . . . = 8/75 .

Using CLT,

P(1.5 ≤ X̄ ≤ 1.65) = P

(
1.5− 1.6√

8/75/5
≤ X̄ − 1.6√

8/75/5
≤ 1.65− 1.6√

8/75/5

)
= P(−1.531 ≤ Z ≤ 0.765)

≈ φ(0.765)− φ(−1.531)

= 0.7150 ,

where Z ∼ N (0, 1).
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Approximations for discrete distributions

The binomial and Poisson RVs can be expressed as a sum of i.i.d. RVs. The CLT

can thus be used to approximate the probabilities associated with these discrete

RVs.

Normal approximation for the binomial distribution.

Let X ∼ Bi(n, p). There exist n independent Bernoulli RVs X1, . . . , Xn, each

having common mean p and common variance p (1− p) such that

X = X1 + . . .+Xn. We showed this earlier using mgfs. By CLT,

X/n− p√
p(1− p)/n

=
X − np√
np(1− p)

≈ N (0, 1) .

Equivalently,

X
d
≈ N (n p, n p (1− p)) .
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Plot of the Bi(n, p) and N (n p, n p (1− p)) distributions, n = 10 and p = 1/2.
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P(X = 4) =
(

10
4

)
0.54 0.56 = 0.2051. We approximate this probability with the

area under the normal curve which sits on the base [3.5, 4.5].
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P(X = 4) = P(3.5 ≤ X ≤ 4.5) = P

(
3.5− 5√

2.5
≤ X − 5√

2.5
≤ 4.5− 5√

2.5

)
≈ P(−0.9486 ≤ Z ≤ −0.3162)

= φ(−0.3162)− φ(−0.9486)

= 0.2025 .

The first step is referred to as continuity correction.

Why do we use continuity correction? It usually improves the accuracy of the

approximation (remember, you are approximating a discrete distribution with a

continuous one). Let X ∼ Bi(n, p) and Z ∼ N (np, np(1− p)),

FX(x) =
x∑
i=0

P(X = i) ≈
x∑
i=0

(FZ(i+ 1/2)− FZ(i− 1/2)) = FZ(x+1/2)−FZ(−0.5) ,

where FZ(−0.5) ≈ 0.
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Summarising, in general, for the binomial distribution,

P(X = k) = P

(
k − 1

2
≤ X ≤ k +

1

2

)
= P

(
k − 1

2 − np√
n p (1− p)

≤
X − 1

2 − np√
n p (1− p)

≤
k + 1

2 − np√
n p (1− p)

)
.

P(x < X ≤ y) = P(x+
1

2
≤ X ≤ y +

1

2
) ≈ . . . .

P(x ≤ X < y) = P(x− 1

2
≤ X ≤ y − 1

2
) ≈ . . . .

Rule of thumb: n sufficiently large usually means np ≥ 5 and n(1− p) ≥ 5.
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Normal approximation for the Poisson distribution

Let X ∼ P(λ). Its mgf is

MX(t) = exp
(
λ (et − 1)

)
=

[
exp

(
λ

bλc
(et − 1)

)]bλc
,

for bλc = integer part of λ. Thus MX(t) = MX1(t)× . . .×MXbλc(t), and there

exists bλc independent RVs X1, . . . , Xbλc each ∼ P(λ/bλc) such that

X
d
= X1 + . . .+Xbλc .

Hence, by CLT,
X − bλc λ

bλc√
bλc λ
bλc

=
X − λ√

λ
≈ N (0, 1) ,

when bλc (and thus λ) is sufficiently large. Equivalently,

X
d
≈ N (λ, λ) , for λ large enough.
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Continuity correction applies here as well!
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