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LHC data structure



LHC event 
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Event definition

〉 Proton-proton bunches collide 

〉 Sample: one proton-proton bunches 
collision, called Event 

〉 Event consists of the tracks and 
secondary vertices (SV), where 
particles are produced 

〉 Features: a track, SV and its products 
physical characteristics reconstructed 
from the detectors (momentum,  
mass, angles, impact parameter)
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Event processing
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Trigger system



What is it?

〉 Select events to store them for offline 
processing 

〉 Should efficiently select interesting 
events 

〉 Interesting event is an event that 
contains at least one SV where 
necessary particle and products are 
produced 

〉Output rate for trigger system is 
limited
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40 MHz bunch crossing rate

L0 Hardware Trigger:  
1 MHz readout, high ET/PT signatures 

450 kHz h±       400 kHz µ/µµ 150 kHz e/γ    

Software High Level Trigger  
    29000 Logical CPU cores  
    Offline reconstruction tuned to trigger time constraints  
    Mixture of exclusive and inclusive selection algorithms  

5 kHz Rate to storage

2 kHz  
Inclusive 

Topological 
     

2 kHz  
Inclusive/

Exclusive Charm 
     

1 kHz  
Muon and 
DiMuon 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Run-II topological  trigger

〉 HLT-1 track is looking for either one super high 
PT or high displacement track 

〉 HLT-1 2-body SV classifier is looking for two 
tracks making a vertex 

〉 HLT-2 improved topo classifier uses full 
reconstructed event to look for 2, 3, 4 and more 
tracks making a vertex
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Machine learning problem

〉 Training data are set of SVs for all events 

〉 Monte Carlo sample (used as signal-like) were simulated for 
various types of interesting events (different decays) 

〉 Minimum bias data (real data for a small period of time) are 
used as background-like 

〉 Output rate is fixed, thus, false positive rate (FPR) for events is 
fixed 

〉 Goal is to improve efficiency for each type of signal events.
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Event representation
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How to measure quality?
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ROC curve, computed for events

ROC curve interpretation
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〉Optimize true positive rate (TPR) for 
fixed FPR for events  

〉Weight signal events in such way that 
channels have the same amount of 
events. 

〉Optimize ROC curve in a small FPR 
region 
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Trigger system: random forest 
trick



Simulated signal event  
contains at least one 
interesting SV, but not each 
SV should be interesting



Random forest for SVRs selection

〉 Train random forest (RF) on SVRs 

〉 Select top-1, top-2 SVs by  
RF predictions for each signal event 

〉 Train classifier on selected SVs
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Trigger system: real-time 



Online processing

There are two possibilities to speed up prediction operation: 

〉 Bonsai boosted decision tree format (BBDT) 

〉 Post-pruning
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What is MatrixNet

〉 Yandex machine leaning algorithm 

〉Gradient Boosting over oblivious Decision Trees 

〉 Feature binarization (like feature hashing) 

〉 Classification, Regression, Ranking
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BBDT

〉 Features hashing using bins before training 

〉 Converting decision trees to  
n-dimensional table (lookup table) 

〉 Table size is limited in RAM (1Gb), thus count of bins for 
each features should be small (5 bins for each of 12 
features) 

〉 Discretization reduces the quality 

〉 Prediction operation takes one reading from the table

18Real-time trigger system



BBDT, results
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Post-pruning

〉 Train MatrixNet (MN) with several thousands trees 

〉 Reduce this amount of trees to a hundred 

〉Greedily choose trees in a sequence from the initial ensemble to 
minimize a modified loss function: 

!

!

〉 At the same time change values in leaves (tree structure is preserved)
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Post-pruning, results
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Real-time trigger system

Trigger results
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https://github.com/yandexdataschool/LHCb-topo-trigger

https://github.com/yandexdataschool/LHCb-topo-trigger
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sPlot technique



sPlot technique

Solution for what? 
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〉 Monte Carlo is not-well simulated 

〉 Need to work with real unlabeled data 

〉 Need somehow to label real data: want to restore for features their distributions for the signal and 
background data 

〉 Our main knowledge is the mass distribution for real data from which we can extract (using some 
physics) the mass pdfs for signal and background. 

〉 How to restore signal/bck pdfs for other features?
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Feature initial distributions 
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sPlot technique

Two mass bins 
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will obtain initial signal 
distribution

Bin 1 Bin 2

Proportion of events inside bins

Bin1 : wb1fb + ws1fs

Bin2 : wb2fb + ws2fs

⇤wb2

⇤(�wb1)
+



sPlot technique

Reconstruction 
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sPlot technique

More bins: sWeight 
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How to reweight?

Bin 2 Bin 3Bin 1

Proportion of events inside bins

〉 Equivalent to some optimization problem 

〉 Have explicit solution  

〉 Produce weights (sWeight) for each event 

〉 Feature pdf with sWeight will be signal pdf
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Tagging system (not official)



What is it?

〉 Event has a signal decay part 

〉 The signal decay part can be produced from b quark or anti-b 
quark 

〉 The system should effectively predict the source of the signal 
decay (b quark or anti-b quark) 

〉 An intermediate B-meson in the signal decay part can oscillate 

〉 The tagging system prediction P(anti-b quark) will allow to 
measure the oscillation effects 
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Tagging particles (goal)
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Tagging particles (training)
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Confidence interval to asymmetry

〉 Construct probabilities for b→final state and anti-b→final state using 
P(anti-b quark) 

〉 Take relation of probabilities, called asymmetry 

〉 Confidence interval for parameter of interest (Am - measured): 

!

〉 Tagging system should maximize effective efficiency (𝜔 - mistag 
probability): 
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Current tagging system
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〉 Take B±→J/ψ K± 

〉 Apply sPlot technique to real data to extract signal-like data (sWeights)  

〉 Choose one tagging track (physical selections, like PID and max PT track) for each event 

〉 Train exclusive taggers for SS (same side) tagging particles and OS (opposite side) 

〉 Target for classifier is ‘right tagged’ label 

〉 Combine all taggers to one (probabilistic model) to obtain P(anti-b quark)



Inclusive tagging system (new ideas)
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〉 Don’t apply physical selections, except loose cuts on PID and 
track ghost 

〉 For each event use full topological information: all tracks and 
possible vertices 

〉 Use probabilistic model for tracks and vertices to obtain 
P(anti-b quark) 

〉Maximize ROC AUC score 



Restrictions
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〉Maximize effective efficiency  

〉 Necessary to calibrate output to probability 

〉 Distribution should be symmetry for b-quark (B-) 
and anti-b quark (B+) 

〉 Flatness for B-mass, lifetime, momentum (to 
simplify further analysis)



Track-based inclusive tagging
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Track-based inclusive tagging
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〉 Target is BSign*trackSign > 0 (avoid to define tagging particle) 

〉 Classifier will return P(track has same sign as B | B sign) 

〉 Suppose:  

P(track has same sign as B | B sign) =  

P(B has same sign as track | track sign) 

〉 AUC 0.5134 

〉 Calibrate output to probability (isotonic calibration) 



Vertex-based inclusive tagging
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〉 Target is BSign*svSign > 0 

〉 Classifier will return P(vertex has same sign as B | B sign) 

〉 Suppose:  

P(vertex has same sign as B | B sign) =  

P(B has same sign as vertex | vertex sign) 

〉 AUC 0.5544 

〉 Calibrate output to probability (logistic calibration) 



Calibration
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〉 Platt’s calibration: logistic regression over the 
classifier output 

〉 Bin method:  

• #(same sign in bin) / #(in bin) 

• fit by linear function 

〉 Isotonic regression: monotonic function 
(extend the bin method)



Isotonic calibration
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Probabilistic model for events
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anti-b quark probability
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〉 Isotonic calibration 

〉 Produced tied probabilities 

〉 Add small normal noise 

0.001 * normal(0, 1)



Check B symmetry (before calibration)
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〉 KS: 0.0168 

〉 compare PDFs using ROC curve  

〉 AUC: 0.48949



Check B symmetry (after calibration)
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〉 KS: 0.01683 

〉 compare PDFs using ROC curve  

〉 AUC: 0.4895



ROC for events (not official)
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〉 AUC score 0.64 (for current tagging system 0.566)  

〉 What about calibration?



Check calibration (with B-symmetry)
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After the mass maximum likelihood fitting we know for each event   
!

!

which are probabilities of an event to be signal and background. 
!

Will reconstruct number of signal events in a particular histogram 
bin for the reconstructed feature. Introduce unknown probability 
that the signal/bck event will be in a particular bin: 
!

!

The total amount of signal/bck events obtained from the fit: 
!

ps(y), pb(y)

sPlot theory
y

ps, pb

Ns, Nb



The random variable, number of signal events in the bin: 
!

!

!

where             are sPlot weights and are a subject to find. 
!

Property: an estimation should be unbiased: 
!

!

Corollary: 
!

!

!

sPlot theory

X =
X

y

ws(y)Iy2bin

ws(y)

EX = psNs

psNs = EX =
X

y

ws(y)EIy2bin =

=
X

y

ws(y)(psps(y) + pbpb(y))



Since the previous equation should hold for all possible               , we get two 
equalities: 
!
!
!
!
!
!
after reduction: 
!
!
!
!
!
!
!
Then we can guarantee that mean input of background are 0 (the expectation 
is zero, but observed number will not be zero due to the deviation)

sPlot theory

psNs =
X

y

ws(y)psps(y)

Ns =
X

y

ws(y)ps(y)

0 =
X

y

ws(y)pbpb(y)

0 =
X

y

ws(y)pb(y)

ps, pb



Assumption of the linearity: 
!
!
Then: 
!
!
!
!
!
where 
!
!
!
The assumption of the linearity is correct because apart from having correct 
mean, we should also minimize the variation of the reconstructed variable.  
!
!
!

sPlot theory
ws(y) = a1pb(y) + a2ps(y)
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Minimization problem
X

y

w2
s(y) ! min

X

y

ws(y)pb(y) = 0

X

y

ws(y)ps(y) = Ns

L =
X

y

w2
s(y) + �1

 
X

y

ws(y)pb(y)

!
+ �2

 
X

y

ws(y)ps(y)�Ns

!
Lagrangian:

0 =
@L

@ws(y)
= 2ws(y) + �1pb(y) + �2ps(y)

It holds for each event, thus we are getting needed the linear dependence



Main assumption

!

The mass must be uncorrelated with the reconstructed feature: 

!

Then it holds for a particular bin for the reconstructed feature: 

ps(mass, bin) = ps(y, feature) = ps(y)ps

ps(mass, feature) = ps(y, feature) = ps(y)ps(feature)


