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Event definition

> Proton-proton bunches collide

>  Sample: one proton-proton bunches
collision, called Event

> Event consists of the tracks and
secondary vertices (SV), where
particles are produced

> Features: a track, SV and its products
physical characteristics reconstructed
from the detectors (momentum,
mass, angles, impact parameter)

| HC data structure



Event processing
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| HC data structure

RECONSTRUCTION

P, PT, PID, IP, angles, ghost

Y
P, PT, IP, Nbody, M, tau, eta

ML, Probabilistic
model, something
else
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Machine learning in LHCb: triggering and flavour tagging systems

Trigger system



What is it?
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Run-ll topological trigger

> HLT-1 track is looking for either one super high

PT or high displacement track

>  HLT-1 2-body SV classifier is looking for two

tracks making a vertex

> HLT-2 improved topo classifier uses full
reconstructed event to look for 2, 3, 4 and more

tracks making a vertex

Trigger system

HLT-1: track
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Machine learning problem

> Training data are set of SVs for all events

> Monte Carlo sample (used as signal-like) were simulated for

various types of interesting events (different decays)

>  Minimum bias data (real data for a small period of time) are
used as background-

> Output rate is fixed, thus, false positive rate (FPR) for events is

fixed

> Goal is to improve e

Trigger system

like

Ticiency for each type of signal events.
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How to measure quality?
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ROC curve, computed for events

> Optimize true positive rate (TPR) for
fixed FPR for events

> Weight signal events in such way that
channels have the same amount of
events.

> Optimize ROC curve in a small FPR
region

Trigger system
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Machine learning in LHCb: triggering and flavour tagging systems

Trigger system: random forest
trick



Simulated signal event
contains at least one
interesting SV, but not each
SV should be interesting



Random forest for SVRs selection

— base — forest selection partial, top 2 —— forest top-2 in channel
— forest selection, top 1 — Xgb top-1 in channel -- rate: 2.5 kHz
— forest selection, top 2 — Xgb top-2 in channel - - rate: 4. kHz

forest selection partial, top 1 forest top-1 in channel

| ROC for events (Itraining qecays) |

> Train random forest (RF) on SVRs

o
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o

> Select top-1, top-2 SVs by
RF predictions for each signal event
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Trigger system: random forest trick 14



Machine learning in LHCb: triggering and flavour tagging systems

Trigger system: real-time



Online processing

There are two possibilities to speed up prediction operation:

> Bonsai boosted decision tree format (BBDT)

» Post-pruning

Real-time trigger system
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What i1s MatrixNet

> Yandex machine leaning algorithm
> Gradient Boosting over oblivious Decision Trees
> Feature binarization (like feature hashing)

» Classification, Regression, Ranking

Real-time trigger system
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BBDT

> Features hashing using bins before training

> Converting decision trees to

n

n-dimensional table (lookup table) <

> Table size is limited in RAM (1Gb), thus count of bins for

each features should be small (5 bins for each of 12 .

features) Y2

> Discretization reduces the quality

> Prediction operation takes one reading from the table

Real-time trigger system

n.
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BBDI, results

Real-time trigger system
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Post-pruning

> Train MatrixNet (MN) with several thousands trees
> Reduce this amount of trees to a hundred

» Greedily choose trees in a sequence from the initial ensemble to
minimize a modified loss function:

Z log (l + (’F("')> o Z et (%)

signal background

> At the same time change values in leaves (tree structure is preserved)

Real-time trigger system
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Post-pruning, results

Real-time trigger system
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Trigger results

Real-time trigger system

N-Body trigger Performance Comparison
(bars correspond to trigger efficiency for different decay modes)
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https://github.com/yandexdataschool/LHCb-topo-trigger
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Machine learning in LHCb: triggering and flavour tagging systems

sPlot technique



Solution for what?

>  Monte Carlo is not-well simulated
>  Need to work with real unlabeled data

> Need somehow to label real data: want to restore for features their distributions for the signal and

packground data

> Our main knowledge is the mass distribution for real data from which we can extract (using some

physics) the mass pdfs for signal and background.

> How to restore signal /bck pdfs for other features?

sPlot technigue
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Feature initial distributions

sPlot technique



Two mass bins

sPlot technique

Proportion of events inside bins

I Binl

will obtain initial signal

distribution
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Reconstruction

I reconstructed Sig

[ reconstructed Bck

I reconstructed Sig

original Sig

sPlot technique
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More bins: sWeight

> Equivalent to some optimization problem
> Have explicit solution
> Produce weights (sWeight) for each event

> Feature pdf with sWeight will be signal pdf

sPlot technique

Proportion of events inside bins

Bin 1 Bin 2 Bin 3

How to reweight?
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Machine learning in LHCb: triggering and flavour tagging systems

Tagging system (not official)



What is it?

> Event has a signal decay part

> The signal decay part can be produced from b quark or anti-b
quark

> The system should effectively predict the source of the signal
decay (b quark or anti-b quark)

> An intermediate B-meson in the signal decay part can oscillate

> The tagging system prediction P(anti-b quark) will allow to
measure the oscillation effects

Tagging system
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Tagging particles (goal)

SS Pion
SS Kaon
SS Kaon NNet
SS Proton
SS Pion BDT /

Signal Decay

BO

0S Muon

OS Vertex Charge
OS Electron

OS Charm

Tagging system
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Tagging particles (training)

SS Pion

SS Kaon

SS Kaon NNet
SS Proton
SS Pion BDT \

Signal Decay

B+

0S Muon

OS Vertex Charge
OS Electron

OS Charm

Tagging system
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Confidence interval to asymmetry

» Construct probabilities for b—final state and anti-b—final state using
P(anti-b quark)

> Take relation of probabilities, called asymmetry

> Confidence interval for parameter of interest (Am - measured):

S U'Am R \/1 - ATZ’n
12w | fengN(1 —2w)

OA

> Tagging system should maximize effective efficiency (@ - mistag
probability):
Eoff = f-:ng2 = €150 (1 — Zw)2

Tagging system
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Current tagging system

> Take B*—=J/p K=

> Apply sPlot technique to real data to extract signal-like data (sWeights)

> Choose one tagging track (physical selections, like PID and max PT track) for each event
> Train exclusive taggers for SS (same side) tagging particles and OS (opposite side)

> Target for classifier is ‘right tagged’ label

> Combine all taggers to one (probabilistic model) to obtain P(anti-b quark)

Tagging system
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Inclusive tagging system (new ideas)

> Don’t apply physical selections, except loose cuts on PID and
track ghost

> For each event use full topological information: all tracks and
possible vertices

> Use probabilistic model for tracks and vertices to obtain
P(anti-b quark)

> Maximize ROC AUC score

Tagging system
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Restrictions

> Maximize effective efficiency
> Necessary to calibrate output to probability

> Distribution should be symmetry for b-quark (B)
and anti-b quark (B™)

> Flatness for B-mass, lifetime, momentum (to
simplify further analysis)

Tagging system
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Track-based inclusive tagging

PIDNNm
PIDNNe
PIDNNp

PIDNNk

r of track

%000 | | Numbe Io tracks | |
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o 1 1
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PIDNNpi

PIDNNp
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Track-based inclusive tagging

ROC curves

> Target is BSign*trackSign > 0 (avoid to define tagging particle)  1°

O
(o

> Classifier will return P(track has same sign as B | B sign)

O
o

> Suppose: %
§ 0.4}
P(track has same sign as B | B sign) = g
g 0.2
P(B has same sign as track | track sign)
%90 0.2 0.4 0.6 0.8
> AUC0.5134 Signal sensitivity

> Calibrate output to probability (isotonic calibration)

Tagging system



Vertex-based inclusive tagging

. . * .

> Targetis BSign™svSign > 0 o ROC curves
>

> Classifier will return P(vertex has same sign as B | B sign) g 0.8}
g
@ 0.6

> Suppose: =
5 0.4f

P(vertex has same sign as B | B sign) = I
v 0.2
D
P(B has same sign as vertex | vertex sign) 0.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Signal sensitivity

>  AUC 0.5544

> Calibrate output to probability (logistic calibration)

Tagging system 39



Calibration

> Platt’s calibration: logistic regression over the

classifier output

>  Bin method:

(same sign in bin) / #(in bin)

_—

fit by linear function

> Isotonic regression: monotonic function

(extend the bin method)

Tagging system
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|sotonic calibration
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Probabilistic model for events

P(B*) H P(track/vertex|B™)

= =Qa
P(B™) et P(track/vertex|B™)
a
=  PB")= , [1]
( l+a
where
P(track/vertex samc.‘, sig.n as BIB) if track/ve rtex ™
+ P(track/vertex opposite sign as B|B)
s = 11
P (B - ) track vertex | P(track/vertex opposite sign as BIB) . _
’ if track/vertex

P(track/vertex same sign as BIB) ’

Pmistag = mln(p(B+ ),p(B ™))

Tagging system
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anti-b quark probability

6 | B probs | c B ;?robs caIibraFed
B B

> Isotonic calibration 5| I all A ) 5|

41 ‘ .
> Produced tied probabilities i

3k I .

. Il 21 - |

> Add small normal noise 2| | - _

] | ] di

0.001 * normal(0, 1 H ||[HH!I|| l | |
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Check B symmetry (before calibration)

>  KS:0.0168
> compare PDFs using ROC curve

> AUC: 0.48949

Tagging system

Symmetry of p(B" ) for B™ and B , before calibration
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Check B symmetry (after calibration)

> KS:0.01683

Symmetry of p(B" ) for B* and B, after calibration

> compare PDFs using ROC curve |
> AUC: 0.4895 |
| i [
Tagging system
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ROC for events (not official)

> AUC score 0.64 (for current tagging system 0.560)

>  What about calibration?

Tagging system
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eck calibration (with B-symmetry

B prob, percentile bins
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Thanks for attention
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sPlot theory

After the mass maximum likelihood fitting we know for each eventy

ps(y), Po(y)
which are probabilities of an event to be signal and background.

Will reconstruct number of signal events in a particular histogram
bin for the reconstructed feature. Introduce unknown probability
that the signal/bck event will be in a particular bin:

Pss Pb

The total amount of signal/bck events obtained from the fit;

Nstb



sPlot theory

The random variable, number of signal events in the bin:
X = Zws (y)]lyébz’n
Y
where wg(y) are sPlot weights and are a subject to find.

Property: an estimation should be unbiased:

X = pst

Corollary:

pst =KX = Zws (y) 43]Iy6bin —



sPlot theory

Since the previous equation should hold for all possible Ds, Pp, we get two

equalities:
pst — Z W (y)psps (y)

0= Z ws(Y)Pup(Y)

after reduction:

Then we can guarantee that mean input of background are O (the expectation
IS zero, but observed number will not be zero due to the deviation)



sPlot theory

Assumption of the linearity:

ws(y) = a1ps(y) + a2ps(y)

Voo Vos N\ (a1 Y _ (0
-V;b -V;S %, N fvé

where V;j = sz y) * p;(y)

Then;

The assumption of the linearity is correct because apart from having correct
mean, we should also minimize the variation of the reconstructed variable.

VX = :E::IU 1%ﬂ1 yebin f; EE::zu



Minimization propblem

> wi(y) — min
> ui(y)pb(y) =0
zy: ws(y)ps(y) = N;
Lagrangian: y
L=> wiy)+\ (Z ws(y)pb(y)> + Az (Z ws(y)ps(y) — Ns>
0 = asz(y) = 2w (y) + App(y) + A2ps(y)

It holds for each event, thus we are getting needed the linear dependence



Vlain assumption

The mass must be uncorrelated with the reconstructed feature:

Ps (mass, feature) — Ps (ya featm"e) — Ps (y)ps(feature)

Then it holds for a particular bin for the reconstructed feature:

ps(mass, bin) = ps(y, feature) = ps(y)ps



