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Network communities

Connected and undirected graphs
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Network communities

What makes a community (cohesive subgroup):

Mutuality of ties. Everyone in the group has ties (edges) to one
another

Compactness. Closeness or reachability of group members in small
number of steps, not necessarily adjacency

Density of edges. High frequency of ties within the group

Separation. Higher frequency of ties among group members compared
to non-members

Wasserman and Faust

Leonid E. Zhukov (HSE) Lecture 5 15.05.2015 4 / 43



Graph cliques

Definition

A clique is a complete (fully connected) subgraph, i.e. a set of vertices
where each pair of vertices is connected.

Cliques can overlap
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Graph cliques

A maximal clique is a clique that cannot be extended by including
one more adjacent vertex (not included in larger one)

A maximum clique is a clique of the largest possible size in a given
graph

Graph clique number is the size of the maximum clique

igraph: cliques(), maximal.cliques(), largest.cliques()
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Graph cliques

Maximum cliques

Maximal cliques:
Clique size: 2 3 4 5
Number of cliques: 11 21 2 2

Zachary, 1977
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Network communities

Definition

Network communities are groups of vertices such that vertices inside the
group connected with many more edges than between groups.

Community detection is an assignment of vertices to communities.

Will consider non-overlapping communities, graph cuts
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Community density

Graph G (V ,E ), n = |V |, m = |E |
Community - set of nodes S
ns -number of nodes in S , ms - number of edges in S

Graph density

ρ =
m

n(n − 1)/2

community internal density

δint(C ) =
ms

ns(ns − 1)/2

external edges density

δext(C ) =
mext

nc(n − nc)

community (cluster): δint > ρ, δext < ρ
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Graph cuts

Graph cut
Q = cut = cs

Ratio cut:

Q =
cut

|S |
+

cut

|V \ S |
=

ncs
ns(n − ns)

Normalized cut:

Q =
cut

Vol(S)
+

cut

Vol(V \ S)
=

cs
2ms + cs

+
cs

2(m −ms) + cs

Conductance (quotient cut):

Q =
cut

min (Vol(S),Vol(V \ S))
=

cs
2ms + cs

cs - edges crossing the boundary between S and V \ S
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Modularity

Compare fraction of edges within the cluster to expected fraction in
random graph with identical degree sequence

Q =
1

4
(ms − E (ms))

Modularity score

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci , cj),=

∑
u

(euu − a2
u)

euu - fraction of edges within community u
au =

∑
u euv - fraction of ends of edges attached to nodes in u

The higher the modularity score - the better are communities

Modularity score range Q ∈ [−1/2, 1), single community Q = 0
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Community detection

Consider only sparse graphs m� n2

Each community should be connected

Combinatorial optimization problem:
- optimization criterion (cut, conductance, modularity)
- optimization method

Exact solution NP-hard
(bi-partition: n = n1 + n2, n!/(n1!n2!) combinations)

Solved by greedy, approximate algorithms or heuristics

Recursive top-down 2-way partition, multiway partition

Balanced class partition vs communities
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Multiway partitioning
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Recursive partitioning

recursive partitioning
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Edge betweenness

Focus on edges that connect communities.
Edge betweenness -number of shortest paths σst(e) going through edge e

CB(e) =
∑
s 6=t

σst(e)

σst

Construct communities by progressively removing edges
Leonid E. Zhukov (HSE) Lecture 5 15.05.2015 15 / 43



Edge betweenness algorithm

Newman-Girvan, 2004

Algorithm: Edge Betweenness

Input: graph G(V,E)

Output: Dendrogram/communities

repeat
For all e ∈ E compute edge betweenness CB(e);

remove edge ei with largest CB(ei ) ;

until edges left;

If bi-partition, then stop when graph splits in two components
(check for connectedness)
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Edge betweenness

Hierarchical algorithm, dendrogram
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Edge betweenness

Zachary karate club
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Edge betweenness

Zachary karate club

igraph:edge.betweenness.community()
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Edge betweenness

Zachary karate club

igraph:edge.betweenness.community()
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Edge betweenness

Zachary karate club

igraph:dendPlot()
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Edge betweenness

igraph:modularity()
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Edge betweenness

best: clusters = 6, modularity = 0.345

igraph:edge.betweenness.community()
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Spectral graph partitioning

Indicator vector si = ±1

Integer optimization problem

Normalized cuts:

Q =
1

4
sTLs, L = D− A

Modularity optimization:

Q =
1

4m
sTBs, Bij = Aij −

kikj
2m

Relaxation s → x , s ∈ Zn, x ∈ Rn

Quadratic optimization problem under constraints

Solved by finding min/max eigenvalues and eigenvectors of L or B

Lx = λDx, or Bx = λx,

Eigenvector rounds up to indicator vector s = sign(x)

Fiedler 1973, Poten and Simon 1990, Newman 2006
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Spectral partitioning

Newman, 2006
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Spectral modularity maximization

M. Newman, 2006

Algorithm: Spectral modularity maximization: two-way partition

Input: adjacency matrix A

Output: class indicator vector s

compute k = deg(A);

compute B = A− 1
2mkkT ;

solve for maximal eigenvector Bx = λx;

set s = sign(xmax)
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Leading eigenvector

clusters = 5, modularity = 0.437

igraph:leading.eigenvector.community()
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Label propagation algorithm

U.N. Raghavan, R. Albert, S. Kumara, 2007

Algorithm: Label propagation

Input: Graph G(V,E)

Output: Communities

Initialize labels on all nodes;

Randomized node order;

repeat
For every node replace its label with occurring with the highest
frequency among neighbors (ties are broken uniformly randomly);

until every node has a label that the maximum number of the neighbors
have;

Raghavan, 2007
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Label propagation

clusters = 3, modularity = 0.435

igraph:label.propagation.community()
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Label propagation

image from Lab41 blog
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Fast community unfolding

V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, 2008 ”The
Louvain method”

Heuristic method for greedy modularity optimization

Find partitions with high modularity

Multi-level (multi-resolution) hierarchical scheme

Scalable

V. Blondel et.al., 2008
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Fast community unfolding algorithm

Algorithm: Fast unfolding

Input: Graph G(V,E)

Output: Communities

Assign every node to its own community;

repeat
repeat

For every node evaluate modularity gain from removing node from
its community and placing it in the community of its neighbor;

Place node in the community maximizing modularity gain;

until no more improvement (local max of modularity);

Nodes from communities merged into ”super nodes” ;

Weight on the links added up

until no more changes (max modularity);
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Fast community unfolding

V. Blondel et.al., 2008
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Fast community unfolding

clusters = 4, modularity = 0.445

igraph:multilevel.community()
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Fast community unfolding

V. Blondel et.al., 2008
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Walktrap community

P. Pons and M. Latapy, 2006 ”Random walks based community detection”

Consider random walk on graph

At each time step walk moves to NN uniformly at random

Distance between nodes rij(t) is computed as probability Pt
ij to get

from one to another in t steps

Computations:
- exact, matrix multiplication
- approximate, random walk simulation

Vertex clustering (agglomerative algorithm)

P. Pons and M. Latapy, 2006
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Walktrap

Algorithm: Walktrap community detection

Input: Graph G(V,E)

Output: Dendrogram/communities

Assign each vertex to its own community;

Compute random walk distance between adjacent vertices;

for n-1 steps do
choose two ”closest” communities and merge them ;

update distance between communities

end
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Walktrap

P. Pons and M. Latapy, 2006
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Walktrap

clusters = 4, modularity = 0.440

igraph: walktrap.community()
Leonid E. Zhukov (HSE) Lecture 5 15.05.2015 39 / 43



Overlapping communities

Community detection:

Graph partitioning (sparse cuts)

Vertex clustering (vertex similarity)

image from W. Liu , 2014
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Real world communities

J. Leskovec, K. Lang, 2010

Leonid E. Zhukov (HSE) Lecture 5 15.05.2015 41 / 43



Community detection algorithms

Fortunato, 2010
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