Pattern-Based Classification of Demographic Sequences

Dmitry I. Ignatov¹, Danil Gizdatullin¹, Ekaterina Mitrofanova¹, Anna Muratova¹, Jaume Baixeries²

¹National Research University Higher School of Economics, Moscow

²Universitat Politècnica de Catalunya, Barcelona

Intelligent Data Processing 2016, Barcelona

- First job (job)
- The highest education degree is obtained (education)
- Leaving parents' home (separation)
- First partner (partner)
- First marriage (marriage)
- First child birth (children)
- Break-up (parting)
- ... (divorce)

Generation and Gender Survey (GGS): three waves panel data for 11 generations of Russian citizens starting from 30s

Binary classification

1545 men

3312 women

Examples of sequential patterns

- $\langle \{education, separation\}, \{work\}, \{marriage\}, \{children\} \rangle (m)$
- $\langle \{work\}, \{marriage\}, \{children\} \{education\} \rangle (f)$
- $\langle \{partner\}, \{marriage, separation\}, \{children\} \rangle (f)$

(3)

- $s = \langle s_1, ..., s_k \rangle$ is the subsequence of $s' = \langle s'_1, ..., s'_k \rangle$ $(s \leq s')$ if $k \leq k'$ and there exist $1 \leq r_1 < r_2 < ... < r_k \leq k'$ such $s_j = s'_{rj}$ for all $1 \leq j \leq k$.
- support(s, D) is the support of a sequence s in D, i.e. the number of sequences in D such that s is their subsequence.

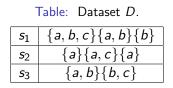
$$support(s, D) = |\{s'|s' \in D, s \preceq s'\}|$$

• s is a **frequent closed sequence (sequential pattern)** if there is no s' such that $s \prec s'$ and

$$support(s, D) = support(s', D)$$

Example

Let D be a set of sequences:



- $I = \{a, b, c\}$ is the set of all items (atomic events)
- $\langle \{a, b\} \{b\} \rangle$ belongs to s_1 and s_3 but it is missing in s_2
- $support_D(\langle \{a, b\} \{b\} \rangle) = 2$
- {\langle {a}\langle, \langle {a}\langle, \langle {a,b}\b\langle, \langle {a,c}\arrow a\rangle \rangle \rangle is the set of closed sequences.

CAEP: Classification by Aggregating Emerging Patterns G. Dong et al., 1999

Growth Rate

$$growth_rate_{D'\to D''}(X) = \begin{cases} \frac{supp_{D''}(X)}{supp_{D'}(X)} \text{ if } supp_{D'}(X) \neq 0\\ 0 \text{ if } supp_{D''}(X) = supp(X) = 0\\ \infty \text{ if } supp_{D''}(X) \neq 0 \text{ and } supp_{D'}(X) = 0 \end{cases}$$

Class score

$$score(s, C) = \sum_{e \subseteq s, e \in E(c)} \frac{growth_rate_{C}(e)}{growth_rate_{C}(e) + 1} \cdot supp_{c}(e)$$

E ▶.

Score normalization

$$normal_score(s, C) = \frac{score(s, C)}{median(\{growth_rate_{C}(e_{i})\})}$$

Classification rule

$$class(s) = \begin{cases} C_1, if normal_score(s, C_1) > normal_score(s, C_2) \\ C_2, if normal_score(s, C_1) < normal_score(s, C_2) \\ undetermined if normal_score(s, C_1) = normal_score(s, C_2) \end{cases}$$

- $s = \langle s_1, ..., s_k \rangle$ is a gapless prefix-based subsequence of $s' = \langle s'_1, ..., s'_k \rangle$ (s* = s') if $k \le k'$ and $\forall i \in k' : s_i = s'_i$.
- Support of gapless prefix-based sequences Let *T* be a set of sequences.

$$support(s, T) = \frac{|\{s'|s' \in T, s* = s'\}|}{|T|}$$

- Let 0 < minSup ≤ 1 be a minimal support parameter and D is a set of sequences then searching for prefix-based gapless sequential patterns is the task of enumeration of all prefix-based gapless sequences s such that support(s, D) ≥ minSup. Every sequence s with support(s, D) ≥ minSup is called a prefix-based gapless sequential pattern.
- Prefix-based gapless sequential pattern (PGSP) p is called closed if there is no PGSP d of greater of equal support such that d = p*.

Gapless sequential patterns

Example

Table: D is a set of sequences.

<i>s</i> ₁	$\{a\}\{b\}\{d\}$
<i>s</i> ₂	$\{a\}\{b\}\{c\}$
<i>s</i> 3	$\{a,b\}\{b,c\}$

$$s = \langle \{a\}\{b\} \rangle$$

- $I = \{a, b, c\}$ is the set of all items (atomic events)
- $s_1 = s*; s_2 = s*$
- $s_3 \neq s*$
- $Supp_D(s) = \frac{2}{3}$
- $\langle \{a\}\{b\}\rangle$ is closed, $\langle \{a\}\rangle$ is not closed.

- $(S, (D, \sqcap), \delta)$ is a pattern structure
- S is a set of objects, D is a set of their their possible descriptions
- $\delta(g)$ is the description of g from S
- Galois connection is given by \diamond operator as follows:

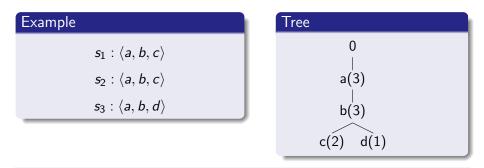
$$A^\diamond := \prod_{g \in A} \delta(g)$$
 for $A \subseteq S$

$$d^\diamond := \{s \in S | d \sqsubseteq \delta(g)\}$$
 for $d \in D$

 For two sequences □ may result in their largest common prefix subsequence

A pair (A, d) is called a **pattern concept** of a pattern structure $(S, (D, \Box), \delta)$ if

- $A \subseteq S$
- $\bigcirc d \in D$
- $A^\diamond = d$
- $d^\diamond = A$



Pattern concepts (PCs)

$$(\{s_1, s_2, s_3\}, \langle a, b \rangle); (\{s_1, s_2\}, \langle a, b, c \rangle)$$
$$(\{s_1\}, \langle a, b, c \rangle) \text{ is not a PC}; (\{s_3\}, \langle a, b, d \rangle)$$

Pattern-based JSM-hypotheses [Finn, 1981], [Kuznetsov, 1993], [Ganter et al, 2004]

Positive, negative and undetermined pattern structures

$$\mathbb{K}_{\oplus} = (S_{\oplus}, (D, \sqcap), \delta_{\oplus})$$

 $\mathbb{K}_{\ominus} = (S_{\ominus}, (D, \sqcap), \delta_{\ominus})$

There is a pattern structure of undetermined examples:

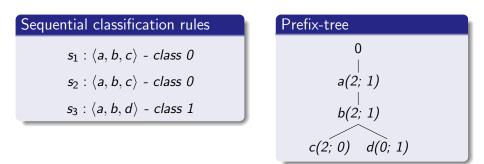
$$\mathbb{K}_{\tau} = (S_{\tau}, (D, \sqcap), \delta_{\tau})$$

Hypothesis

A **hypothesis** is a pattern intent that belongs to examples from a fixed class only

A pattern intent h is a positive hypothesis (dually for negative hypotheses) if

$$orall s\in S_{\ominus}(s\in S_{\oplus}):h
ot\equiv s^{\ominus}(h
ot\equiv s^{\oplus})$$



Hypotheses

 $\langle \{a\}, \{b\}, \{c\} \rangle$ is a hypothesis of class 0 $\langle \{a\}, \{b\}, \{d\} \rangle$ is a hypothesis of class 1

$$class(g_{\tau}) = \begin{cases} positive \text{ if } \exists h_{\oplus}, h_{\oplus} \sqsubseteq \delta(g_{\tau}) \text{ and } \nexists h_{\ominus}, h_{\ominus} \sqsubseteq \delta(g_{\tau}) \\ negative \text{ if } \nexists h_{\oplus}, h_{\oplus} \sqsubseteq \delta(g_{\tau}) \text{ and } \exists h_{\ominus}, h_{\ominus} \sqsubseteq \delta(g_{\tau}) \\ undetermined \text{ if } \exists h_{\oplus}, h_{\oplus} \sqsubseteq \delta(g_{\tau}) \text{ and } \exists h_{\ominus}, h_{\ominus} \sqsubseteq \delta(g_{\tau}) \\ undetermined \text{ if } \nexists h_{\oplus}, h_{\oplus} \sqsubseteq \delta(g_{\tau}) \text{ and } \nexists h_{\ominus}, h_{\ominus} \sqsubseteq \delta(g_{\tau}) \end{cases}$$

Growth Rate

$$GrowthRate(g, \mathbb{K}_{\oplus}, \mathbb{K}_{\ominus}) = \frac{Sup_{\mathbb{K}_{\oplus}}(g)}{Sup_{\mathbb{K}_{\ominus}}(g)}$$

Emerging patterns

A pattern is called **emerging pattern** if its growth rate is greater than or equal to $\Theta_{\textit{min}}$

$${\it GrowthRate}(g, \mathbb{K}_\oplus, \mathbb{K}_\ominus) > \Theta_{\it min}$$

s is a new object

$$normal_score_{\oplus}(s) = \frac{\sum_{p \in P_{\oplus}} GrowthRate(p, \mathbb{K}_{\oplus}, \mathbb{K}_{\ominus})}{median(GrowthRate(P_{\oplus}))} : p \sqsubseteq s$$
$$normal_score_{\ominus}(s) = \frac{\sum_{p \in P_{\ominus}} GrowthRate(p, \mathbb{K}_{\ominus}, \mathbb{K}_{\oplus})}{median(GrowthRate(P_{\ominus}))} : p \sqsubseteq s$$

Classification via emerging patterns

$$class(s) = \begin{cases} positive \ if \ normal_score_{\oplus}(s) > score_{\ominus}(s) \\ negative \ if \ normal_score_{\oplus}(s) < score_{\ominus}(s) \\ undetermined \ if \ normal_score_{\oplus}(s) = normal_score_{\ominus}(s) \end{cases}$$

Classification algorithm for gapless prefix-based sequential patterns

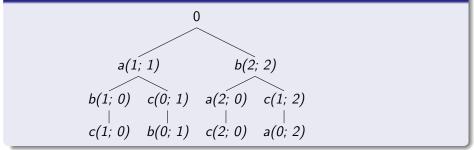
- Build the prefix tree for the input sequences.
- Ø For each tree node calculate its Growth Rate.
- For every new sequence traverse the tree and compute the Score for each class.
- Compare the Score value for different classes and classify the new sequence.

Execution example

Input sequences

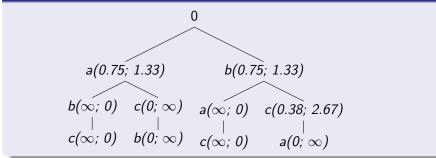
$\begin{array}{l} class_0: \{\langle \{a\}\{b\}\{c\}\rangle, \langle \{b\}\{a\}\{c\}\rangle, \langle \{b\}\{a\}\{c\}\rangle, \langle \{b\}\{c\}\rangle\} \\ class_1: \{\langle \{a\}\{c\}\{b\}\rangle, \langle \{b\}\{c\}\{a\}\rangle, \langle \{b\}\{c\}\{a\}\rangle\} \end{array}$

Prefix tree



★聞▶ ★ 国▶ ★ 国▶

Counting Growth Rate



New sequence

 $\langle \{b\}; \{c\}; \{a\} \rangle -???$

 $Score_0 = 0$

$$\mathit{Score}_1 = 2.67 + \infty = \infty$$

Ignatov et al. (HSE)

Classification of Demographic Sequences

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparison of closed and non-closed patterns

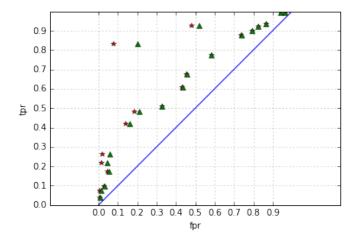


Figure: TPR vs FPR for closed and non-closed patterns

Experiments and results

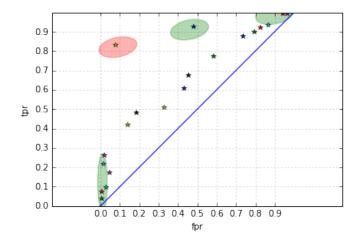


Figure: TPR-FPR for classification via gapless prefix-based patterns

IDP 2016 23 / 27

 $(\langle \{work, separation\}, \{marriage\}, \{children\}, \{education\}\rangle, [inf, 0.006])$

 $(\langle \{separation, partner\}, \{marriage\}\rangle, [inf, 0.006])$

 $(\langle \{work, separation\}, \{marriage\}, \{children\}\rangle, [inf, 0.008])$

 $(\langle \{work, separation\}, \{marriage\} \rangle, [inf, 0.009])$

 $(\langle \{ education \}, \{ marriage \}, \{ work \}, \{ children \}, \{ separation \} \rangle, [10.6, 0.006])$

 $(\langle \{ education \}, \{ marriage \}, \{ work \}, \{ children \} \rangle, [12.7, 0.007])$

 $(\langle \{ educ \}, \{ work \}, \{ part \}, \{ mar \}, \{ sep \}, \{ ch \} \rangle, [10.6, 0.006])$

- We have studied several pattern mining techniques for demographic sequences including pattern-based classification in particular.
- We have fitted existing approaches for sequence mining of a special type (gapless and prefix-based ones).
- The results for different demographic groups (classes) have been obtained and interpreted.
- In particular, a classifier based on emerging sequences and pattern structures has been proposed.

Thank you!

Questions?