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Overview
1. General introduction

- Example applications
- Matrices associated with a graph: A, L, ᮀ, P
- Laplacians, significance
- Graph spectra
- Cospectral graphs and graph reconstruction

2. Spectrum of the normalized Laplacian ᮀ

- Patterns of spectral plots (theory & simulations)

3. Spectrum-based distances and kernels

- Disclaimer: questions rather than answers



General introduction



Example applications
1. Physics: 

- membrane vibration problem (approximative solving of partial differential equations)
- thermodynamic properties of a system of molecules adsorbed on the surface of a crystal

2. Chemistry: 

- i.e., theory of unsaturated conjugated hydrocarbons (electrons on the molecular graphs)

3. Computer science:

- expanders (-> communication networks, error-correcting codes, optimizing memory space, 
computing functions, sorting algorithms, etc.)

- modelling virus propagation in computer networks, Web search engines, etc.

4. Biology, Geography, Social Sciences

For a survey and references, see 
Cvetcović D. Applications of Graph 
Spectra: An Introduction to the 
Literature



Notations
Adjacency matrix A, unweighted edges:

    Adjacency matrix A, weighted edges:

     Matrix D:

      where d(a) for unweighted:

     weighted:

        



Matrices
1. Adjacency matrix: A

2. Laplacian: L = D - A 

(for unweighted graphs also L = BTB (B is the incidence matrix)

3. Normalized Laplacian: ᮀ = D-1/2 L D-1/2

4. Transition probability: P = D-1A = =  D-1/2 (I - ᮀ) D1/2

5. Signless Laplacian |L|= D + A (will be rarely mentioned today)

Note:      both for graphs with weighted and unweighted edges



Sidenote on Laplacians
Definition of (continuous) Laplace operator:

Definition of discrete Laplace operator:

   or

(where )



Physical significance
Diffusion (heat) equation, continuous case:

 u/
t=ᶓ Δu

Diffusion equation, discrete case:

u/
t=ᶓ Lu

u/
t=ᶓ ᮀu

Eigenvalues: u(t)=CkVke
ᶓᶝ

k
t     



Eigenvalues
1. A (adjacency matrix)

2. L = D - A (Laplacian)

3. ᮀ = D-1/2 L D-1/2   

4. P = D-1A =  D-1/2 (I - ᮀ) D1/2



Eigenvalues: illustration

Weighted 
matrix

Unweighted 
matrix



Eigenvalues: 
more on L

Weighted 
matrix

L ᮀ degrees |L|

A

L

ᮀ

deg

Moments of Laplacian eigenvalues 
can be expressed via degrees:

Still, a general statement is that the degree distribution and the 
Laplacian distribution are usually different. For an example when they 
are alike, see a book by Van Mieghem, p.181



Cospectral graphs
Cospectral with respect to what matrix?

Figures and Table from van Dam E.R. & Haemers W.H. (2003) Which graphs are determined by their 
spectrum? Linear Algebra and its Applications, 373, 241-272



Spectrum-based graph reconstruction
(Evolutionary reconstruction of networks, Mads Ipsen and Alexander S. Mikhailov)
Evolutionary algorithm (based on spectrum of unnormalized Laplacian):

Mutation: chose node at random, delete all connections and generate new random 
node degree and node connections. 

Algorithm: compute spectral distance* d’ between new graph and target and spectral 
distance d between old graph and target:  

if d’-d<0,  accept mutation
if d’-d>0, accept mutation with a certain probability (that depends on 
the value d’-d)
(to avoid that the evolution gets trapped in a local minimum)

*spectral denstity, spectral distance:



Spectrum-based graph reconstruction

● Random network (N=10)
● Clustered network (N=50, 3 clusters)
● Small world (N=40)

(Evolutionary reconstruction of networks, Mads Ipsen and Alexander S. Mikhailov)



Spectrum of the 

normalized Laplacian ᮀ



Normalized Laplacian vs. other matrices
Spectra of different matrices might be usefull in their own way:

1. A,   ex: |ᶓ0|+... |ᶓn-1|= graph energy

                 (ᶓ0
3+... ᶓn-1

3 )= # triangles in a graph    

2. L = D - A , note that for a regular graph with degree d: ᷗj = d - ᷍N-1-j 

3. ᮀ = D-1/2 L D-1/2   , information about graph structure, spectral gap (see below) 

4. P = D-1A =  D-1/2 (I - ᮀ) D1/2  , random walks,spectral gap (also, ᷥᬆ = 1 - ᷙᬆ 
the spectral gap of a stochastic matrix P also equals the second smallest eigenvalue of normalized 
Laplacian)



Eigenvalues of ᮀ
● ᷗi  ∊[0,2], ᷗn-1  = 2 (largest eigenvalue) iff graph bipartite
● 0 always eigenvalue, eigenvector (1,...1)
● #0 eigenvalues = #connected components 
● G=union of disconnected subgraphs   ⇒     spectrum=union of spectra

   from now on let us consider only connected graphs
● ᷗ1(second smallest eigenvalue), called spectral gap, shows how 

“connected” a graph is:

If ᷗ1 is small, then there exists a cut disconnecting the graph that cuts very 
few edges. If ᷗ1 is large, then every cut disconnecting the graph cuts a 
large number of edges.

upper bound:                            , with equality iff complete graph  



Eigenvalues of ᮀ

High multiplicity of 1:
- one node is copied 

many times
- every node is doubled

Symmetric distribution:
- bipartite graph

See also: Anirban Banerjee, Jürgen 
Jost (2008) On the spectrum of the 
normalized graph Laplacian



Eigenvalues of ᮀ

Same story for binarized 
matrices:

See also: Anirban Banerjee, Jürgen 
Jost (2008) On the spectrum of the 
normalized graph Laplacian



Eigenvalues of ᮀ
Multiplicity of arbitrary values:



Eigenvectors 

1st 
important

2d 
important

3d 
important

30th 
important

A L ᮀ

L for Path of 
12 nodes  

From: Spielman D. 
Spectral graph theory 



● L: nice drawing 

 

● A: Low-rank approximation 

Take k largest eigenvalues - the best 
approximation of A by a k-rank matrix 

● L: Spectral clustering 
Compute eigenvector e1 for second-largest eigenvalue ᶝ1 of ᮀ
Partitioning may be done in different ways, ex: 
Compute median m of the components of e1
Two clusters, depending on whether component < or > than m

Eigenvectors (of A and ᮀ ), applications 

k=3 k=5 k=10 Original

Example:



Coefficients of the characteristic polynomial 

- Not today! 

- But there are some facts there too, e.g.

- -



Spectrum-based 
distances and kernels



Suggestions?
1. Spectral-based metrics

- Algebraic connectivity
- Eigenvector centrality
- Graph energy
- Effective graph resistance (the difficulty of transport in a graph)

2. Spectra

- Vectors of sorted eigenvalues
- Distances (Euclidean, Manhattan) - how to convert to kernels? exp(- distance)?

3. Eigenvalue distributions 

- Distances between densities (i.e., K-L) - yet again, how to convert to kernels?
- or just features describing relevant properties of distributions (i.e., multiplicity, symmetry)

4. Other ideas? (i.e., projection of one matrix to the vector space of the other)



Thank you!

annatkachev42@gmail.com
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