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Overview
— Why tractography is important?

— Main algorithms to fiber tracking

1. Tensor-based
2. Orientation distribution function (ODF) 
3. Probability

— Open questions

1. Is there “best” tractography algorithm in terms of predictive power? (Spoiler: maybe no)
2. Can we combine data from them to boost predictive power? (Spoiler: maybe yes)
3. How does field strength affect connectome weights? (Spoiler: it looks like 7T is slightly better than 3T)
4. How do spatial/angular resolution affect weights? (Spoiler: looks like thinner tracts are the victims)

— Conclusion



Why is tractography important?
— tractography algorithms 
provide connection weights

— there are two main steps in 
tractography: to fit a diffusion 
model into each voxel and track 
fiber across the voxels

— there are two main classes of 
fiber tracking: probabilistic and 
deterministic

Image source: “Boosting brain connectome classification accuracy in 
Alzheimer’s disease using higher-order singular value decomposition», 
(Zhan et al.)



Algorithms overview
— Fiber assignment by continuous tracking (tensor-FACT).

— Second-order Runge-Kutta (tensor-RK2).

— Interpolated streamline (tensor-SL).

— Tensorline (tensor-TL). 

— ODF-FACT

— ODF-RK2

— PICo

— Hough

— Probtrackx

















Is there “best” algorithm in terms of predictive power?

— It looks like there is no universally optimal method according to “Comparison of 
nine tractography algorithms for detecting abnormal structural brain networks in 
Alzheimer’s disease» (Zhan et al., 2015);

— Authors also didn’t found universally helpful method of dimensionality reduction;

— However, they did found, that some diagnostic groups were easier to discover 
than others (surprize-surprize).



Connectome AD comparison: pipeline and demographics

Parcellation atlas: Harvard Oxford Cortical and Subcortical probabilistic atlas (113⨉113)

Image auisition info: Each subject underwent whole-brain MRI scanning on Tesla GE Medical Systems scanners. 
T1-weighted SPGR(spoiled gradient echo) sequences (256 x 256 matrix; voxel size = 1.2 × 1.0 × 1.0 mm 3 ; TI = 
400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11 ◦ ), were collected as well as DWI (128 × 128 matrix; voxel 
size: 2.7 × 2.7 × 2.7 mm 3 ; scan time = 9 min; more imaging details may be found at 
http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf). 46 separate images were 
acquired for each DWI scan: five T2-weighted images with no diffusion sensitization (b 0 images) and 41 DWIs (b = 
1000 s/mm 2 ). The DWI protocol for ADNI was chosen after a detailed evaluation of different protocols that could 
be performed in a reasonable amount of time; we reported these comparisons previously (Jahanshad et al., 2010; 
Zhan et al., 2013a). All T1-weighted MR and DWI images were checked visually for quality assurance toexclude 
scans with excessive motion and/or artifacts; all scans were included.

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: features
1. Raw features. All the values in the upper triangle of the matrices — 6328 (113 × 112/2) features overall;

2. Global threshold. Subset of previous features based on Top 5-40% largest elements of mean matrix across all 
subjects (6328 features);

3. Individual binary threshold. Top largest values mask of the top 5-40% of individual matrix (6328 features); 

4. PCA. First k principal components on raw features matrix, where k varies from 10 to 150. The reduced input matrix is 
then used to perform classification;

5. GLRAM. Generalized low-rank approximation, which factorizes all the subject matrices into three components. That 
is, for the matrix of each subject Mi , it factorizes as Mi = L × Xi × R, where L ∈ Rd × k and R ∈ Rk × d are shared 
orthonormal transformations for all matrices, and Xi ∈ Rk × k is a reduced matrix. Xi is the new feature representation 
for classification. One important parameter in GLRAM is the reduced row/column dimensionality. Again, a range of 
parameter values was investigated to seek the “best” option for the classification. The feature space is m2.

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: classification pipeline
— z-score normalization performed for each feature;

— To avoid class imbalance, authors constructed 20 balanced training/testing sample splits, as follows: 
(a) Randomly draw 85% of the data from the smaller class for training, and the remaining 15% for testing. 
(b) In the larger class, match the same number of training samples by a random subsampling, and the rest 
are put in the test set;

— Classifier: sparse logistic regression;

— Main metric: ROC AUC.

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: post hoc statistical analysis
— The 95% confidence interval (CI) for the AUC was computed and one-way analysis of variance 
(ANOVA) was performed on the AUCs;

— Null hypothesis (H0) was: there is no significant difference in the AUCs from different tractography 
algorithms;

— The experiment-wise alpha threshold was set to p < 0.05;

— All the p-values reported have been adjusted by SPSS with the appropriate correction for the effective 
number of multiple comparisons used (Bonferroni correction). For instance, for a three-group experiment, 
a pairwise comparison (i.e., a t-test) that yields a p-value of 0.016 would be considered significant at the 
0.05 level, because 0.016 < (0.05/3).

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: matrices visualisation

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)

Comparison of averaged normalized brain networks from nine different 
tractography algorithms, including (A) tensor-based FACT; (B) tensor-based 
RK2; (C) tensor-based SL; (D) tensor-based TL; (E) ODF-based FACT; (F) 
ODF-based RK2; (G) ODF-based PICo; (H) ODF-based Hough, and (I) 
Ball-and-stick model based Probtrackx, from all 202 subjects. 

In each network, each cell represents the connectivity between each pair of 
ROIs; the ROI index runs from 1 to 113 from left to right and from bottom to 
top. ROI names are detailed in the Supplement. Visually, brain networks 
from different tractography algorithms may have similar patterns but in 
reality, the recovered brain network varies, as shown by the value in the 
randomly selected cell (11,107).

Selected pixel weights (x=11, y=107): 0.128, 0.137, 0.140, 0.148, 0.1, 0.112, 
0.124, 0.05, 0.021. 



Connectome AD comparison: raw matrices

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: raw matrices and thresholded

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)

 



Connectome AD comparison: individual threshold

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)

 



Connectome AD comparison: PCA

Source:  “Comparison of nine tractography algorithms for detecting 
abnormal structural brain networks in Alzheimer’s disease” (Liang 
Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: significant algorithms difference

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)

 



Connectome AD comparison: main feature-algorithm differences

Source:  “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)

 



Can we combine tractography data to boost predictive power?

— Yes, according to “Discriminative fusion of multiple brain networks for early mild 
cognitive impairment detection» (Wang et al.);

— Convex sum of 9 tractography algorithms boosted AUC to 0.89 from 0.66 by 
best algorithm (Probtrackx);

— Averaged connectome from 9 algorithms performed worse than each 
tractography individually (0.50 AUC);

— Concatenated data performed about the same as most algorithms (0.58 AUC).



Connectome fusion: pipeline

Source:  “Discriminative fusion of multiple brain networks for early mild cognitive impairment detection” (Qi Wang, Liang Zhan, Paul M. Thompson, Hiroko H. Dodge, Jiayu Zhou)



Connectome fusion: experiment setting
— Dataset: 124 subjects including 51 normal elderly controls (NCs), 73 individuals diagnosed with early 
mild cognitive impairment (eMCI);
— Atlas: Harvard Oxford Cortical and Subcortical Probabilistic Atlas (113⨉113);
— Algorithms: tensor (FACT, RK-2, TL, SL), ODF (FACT, RK2) and probabilistic (PICo, Hough, 
Probtrackx);
— Data fusion method: convex sum of each of nine networks;
— Classifier: Logistic Regression with L1-regularization (sparse LR) with loss depending on sum weights;

— Cross validation: 10 iterations of 10-fold;
— Baselines: B-CON (concatenated networks) and B-AVG (mean of all networks).

Source:  “Discriminative fusion of multiple brain networks for early mild cognitive impairment detection” (Qi Wang, Liang Zhan, Paul M. Thompson, Hiroko H. Dodge, Jiayu Zhou)



Connectome fusion: results
Main findings:

— DFUSE algorithm significantly outperformed all other 
competing methods (p-value < 0.001);

— Probtrackx has the heaviest weight of 0.87 (all 
elements of τ range from 0 to 1), averaged over 10 
iterations;

— The weights of T-TL, O-FACT, O-RK2 are consistently 
zeros;

— the predictive performance of the feature 
concatenation (B-CON) does not even perform as well as 
the best individual brain network. This may be because 
there are too many features presented to the classifier 
(over 56k), relative to the number of subjects (samples) 
available to train it (~110). 

Source:  “Discriminative fusion of multiple brain networks for early mild cognitive impairment detection” (Qi Wang, Liang Zhan, Paul M. Thompson, Hiroko H. Dodge, Jiayu Zhou)



How does field strength affect connectome weights?

— Connectivity matrices from whole-brain tractography tended to pick up a greater 
density for some subcortical connections at 7T than at 3T, according to “Magnetic 
Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity 
Networks” (Zhang et al., 2012)

— We can expect that 7T data should better represent reality of neural pathways, 
but further validation is needed. Field itself is not enough. Voxel size, numbers of 
diffusion gradients, and diffusion weighting schemes on the local diffusion model 
are also important.

— Paper is rather old, so there may be more up-to-date analysis. 



3T vs 7T connectomes: protocols and demographics

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks” (Zhang et al., 2012)



3T vs 7T connectomes: methods

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks” (Zhang et al., 2012)

— Atlas: Harvard Oxford Cortical and Subcortical probabilistic atlas (113⨉113);

— Tractography algorithm: ODF-RK2 (all voxels with FA > 0.2);

— Spline filter was applied to each generated fiber. All duplicate and very short fibers (<10 mm) were 
removed;

— SNR of the non-diffusion-sensitized images (b0 )comparison between 3T and 7T;

— ROI-based DTI-derived measures comparisons (fractional anisotropy, mean diffusivity, axial diffusivity, 
radial diffusivity) — I won’t elaborate on that today;

— Network metrics depending on sparsity: Characteristic Path Length, Global Efficiency, Mean Clustering 
Coefficient, Modularity, degree of small-worldness.  



3T vs 7T connectomes: SNR differences

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks” (Zhang et al., 2012)



3T vs 7T connectomes: fiber number and length

Source: “Magnetic 
Resonance Field Strength 
Effects on Diffusion Measures 
and Brain Connectivity 
Networks” (Zhang et al., 
2012)



3T vs 7T connectomes: connectivity

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks” 
(Zhang et al., 2012)



3T vs 7T connectomes: network metrics

Source: “Magnetic Resonance Field Strength Effects on 
Diffusion Measures and Brain Connectivity Networks” (Zhang et 
al., 2012)



How does spatial and angular resolution affect connectome weights?

— Spatial and angular resolution affected the computed connectivity for narrower 
tracts (internal capsule and cerebellum), but also for the corticospinal tract, 
according to “How do spatial and angular resolution affect brain connectivity maps 
from diffusion MTI” (Zhang et al.);

— Data resolution affected the apparent role of some key structures in cortical 
anatomic networks;

— Care is needed when comparing network data across studies, and interpreting 
apparent disagreements among findings.



Spatial/angular resolution: data used

— Dataset 1 (Mayo). 8 healthy subjects (age: 32.0 years ± 3.9SD; 4 males). 

— Dataset 2. Healthy male subject (32 years old) was scanned at multiple spatial 
resolutions (2x2x2, 2.5x2.5x2.5, 3x3x3 and 4x4x4 mm 3 ) with axial DTI using the 
following acquisition parameters: TR=8000 ms, TE=83 ms, 128x128 matrix, 64 
slices, b-value=1000 s/mm 2 , one baseline (b0 ) scan and 12 (low!) gradient 
directions. 



Spatial/angular resolution: methods

— Angular resolution (dataset 1). DWIs subsampled from 48 to 15. Sub-sampling was based on 
maximizing the total angular distribution energy of the remaining set of k gradients, to optimize the 
uniformity of the spherical sampling;

— Spatial resolution (dataset 1, P2 protocol). Authors gradually reduced data spatial resolution by 
downsampling its isotropic voxels of side 2.5 mm to 10 mm (0.1 mm step) with linear interpolation; 

— Spatial resolution (dataset 2). Variations across 4 voxel sizes; 

— White matter connectivity: 50 ROIs ICBM young adult DTI-81 atlas (there is some criticism of this 
atlas). Connectivity was then computed from a fast-marching based method

— Cortical connectivity: 70 ROIs standard FreeSurfer Atlas. Tensor-FACT fiber tracking.



Spatial/angular resolution: angular effects

— Figure shows the standard
deviation of the connectivity matrix elements 
among the connectivity maps calculated from 
subset 15 to subset 48; this standard 
deviation was computed in each of the 8 
subjects, and then averaged across all 8, to 
infer general patterns.

— Some of the thinnest (narrowest) fiber 
tracts – the cerebellar ICP and SCP, and the 
internal capsules – were strongly affected by 
altering the angular resolution. Even some of 
the major pathways, including the apparent 
connections of the cortico-spinal tract with the 
ACR, ALIC and SFO were also quite severely 
influenced



Spatial/angular resolution: isolating spatial resolution effect
— Figure shows the standard deviation 
of connectivity matrix elements
across connectivity maps calculated at 
all voxel sizes in the range
2.5-10 mm, averaged across all eight 
subjects.

— The computed WM connectivity in 
all tracts and all regions is affected
by partial volume effects. Greatest 
differences were found in the
connections of the medial lemniscus, 
cerebellar peduncles, internal
capsules, which are among the 
thinnest tracts.



Spatial/angular resolution: spatial effects from dataset 2
— Figure shows the standard deviation 
of connectivity among connectivity 
maps calculated at 4 different isotropic 
spatial resolutions (2, 2.5, 3 and 4); 

— These maps show more differences
than those in previous figure, as signal 
averaging was used to boost the SNR
for the scans with smaller voxels.



Spatial/angular resolution: spatial effects from dataset 2
— Figure shows the standard deviation 
of elements in cortical connectivity 
matrices for 70 ROIs in the 12-direction 
dataset, at 4 different spatial 
resolutions.

— The computed pattern of cortical
connectivity heavily depends on the 
spatial resolution, with less apparent 
connectivity in scans with large voxels. 
The cortical connection between 
parahippocampal and fusiform gyri, 
and between corresponding structures 
in the left and right hemispheres
were most affected by spatial 
resolution



Overall conclusion
— Tractography algorithm choice is important;

— There is no best tractography algorithm in terms of predictive power;

— We can combine tractography data to improve predictions;

— Field strength matters, but we can work with current 3T tracks;

— Spatial and angular resolution affects connectome weights.



Thank you!
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