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Overview

— Why tractography is important?
— Main algorithms to fiber tracking

1. Tensor-based
2. Orientation distribution function (ODF)
3. Probability

— Open questions

Is there “best” tractography algorithm in terms of predictive power? (Spoiler: maybe no)

Can we combine data from them to boost predictive power? (Spoiler: maybe yes)

How does field strength affect connectome weights? (Spoiler: it looks like 7T is slightly better than 3T)
How do spatial/angular resolution affect weights? (Spoiler: looks like thinner tracts are the victims)

»own -

— Conclusion



Why is tractography important?
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FIG. 1. Flowchart of steps to compute brain connectivity. Diffusion weighted images (a) are used as the basis to compute
maps of whole-brain tractography (b); in parallel, the standard Tl—weighted anatomical magnetic resonance image from
the same subject (¢} is parcellated using the Harvard/Oxford Cortical and Subcortical probabilistic atlases, to define the re-
gions of interest (ROIs) (d) by counting the number of detected fibers connecting each pair of ROIs (e), and expressing
them as a proportion of all fibers recovered in the entire brain, we can create the anatomical connectivity matrix (f), for
each subject in the study, and for each type of scan they had.

— tractography algorithms
provide connection weights

— there are two main steps in
tractography: to fit a diffusion
model into each voxel and track
fiber across the voxels

— there are two main classes of
fiber tracking: probabilistic and
deterministic

Image source: “Boosting brain connectome classification accuracy in
Alzheimer’s disease using higher-order singular value decomposition»,
(Zhan et al.)



Algorithms overview

— Fiber assignment by continuous tracking (tensor-FACT).
— Second-order Runge-Kutta (tensor-RK2).

— Interpolated streamline (tensor-SL).

— Tensorline (tensor-TL).

— ODF-FACT

— ODF-RK2

— PICo

— Hough

— Probtrackx



Tensor-FACT

Fiber assighment by
continuous tracking

Mori et al., 1999

Tensor-RK2
2d-order Runge-Kutta
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Tensor-TL

Tensorline (instead of streamline)
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Tensor-SL

Interpolated streamline

The tensor D and its eigenvector corresponding
to the largest eigenvalue were calculated at
each step, from interpolated DT-MRI data, to

define the direction of the next step.

Conturo et al., 1999



ODF-based methods

Orientation Distribution Function
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In our analytical QBI solution, the signal at position
P is first estimated as
i

S(u), =Y ¢;¥(u), (1)

j=1

where S(u) is the measured diffusion weighted signal
in each of the N gradient directions u := (#,d)
on the sphere (#,¢ obey physics convention, # &
[0,7], ¢ € [0,27]), ¢; are the SH coefficients describing
the signal, ¥; is the j** element of the SH basis and
R = (1/2)(£ + 1)(f + 2) is the number of terms in
the basis of order £ when choosing only even orders.




Table 3

Summary of three major dimensions along which most tractography algorithms can be classified.

Dimension

Approach

Description

Probabilistic vs deterministic

Local ve global

Single vs multi-diredion

Deterministic
Probabilistic
Laally greedy

Globally optimal

Single direction

Pulti-direction

Propagates single rajectories in accordance with the principal direction of water diffusion [eg, Basser et al, 2000}
Do not estimate the spatial uncertainty of the rajectory.

Sarmples a directon distribution function at each step o determine the propagation direction. Allowes estimation of

a probability density of the most lkely location of the tract, and thus is spatlal uncertainty (g, Behrens etal, 2003).
Teajectories propagale incrementally using & near-ighted, voxel-ly-vosel approach (Bagser et al, 2000; Behrens

et al., 2003). Can be affected by noisy voxels,

Estirmates the ghobally optimal path between two regions, typically by representing voxel-wise water diffusion as a
connected graph and finding the shortest path between seed and target voxels (lurda-Medina et al., 2007;
Jturria-Meding et al, 2008; Zalesky, 2008 Zalecky and Fornito, 2000}, More robust to noise.

The direcion of water diffusion in each voxel is represented using the primary eignvector of the diffusion tensor
(Basser et al, 2000; Behrens et al, 2003 ). Does not distinguish crossing fibers.

The direcion of water diffucion in each voxel & represented uting an orientation distribution fundion [ Behrens ot al,
2007 Tournier et al, 2004 ). Allows resalution of crossing fibers, but requires good quality, high angular resolution data,

Diffusion model
Tractography method
Local tractography

Global tractography

Single-direction Multi-direction

Deterministic Probabilistic Dete rministic Probabilistic

SDD MDD MDP

- DT streamline [ 1) - Pio [4] - ODF streamline [6,7,8)

- Tensor deflection [2.3] s K [5] - (SD streamline [9) - PROBTRACKX [11]
SDG MDG

- DT Graph-tractography |13 - (S Multigraph-tractography |15

- ConTrack [14] - BlueMatter [16]

Bastiani et al., 2012



PiCo

Probabilistic Index of Connectivity

¥

(o e

s Lt

= P (1] 5 an

Geoffrey et al., 2003

Hough

— . o
—“‘\‘-““f"’—.-

s o, o o,

B e T
e

- .

Aganjetal., 2011



ProbtrackX
X for crossing

Behrens et al., 2007



Is there “best” algorithm in terms of predictive power?

— It looks like there is no universally optimal method according to “Comparison of
nine tractography algorithms for detecting abnormal structural brain networks in
Alzheimer’'s disease» (Zhan et al., 2015);

— Authors also didn’t found universally helpful method of dimensionality reduction;

— However, they did found, that some diagnostic groups were easier to discover
than others (surprize-surprize).



Connectome AD comparison: pipeline and demographics
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FIGURE 1 | Flow chart describing the steps taken in this study to create, analyze, and compare structural networks.

TABLE 1 | Summary of ADNI data used in this study.

Mormal MCI (MCI) AD Total

control (NC)
Mumber 51 112 a0 202
Age ) 69.69 4+ 1543 71.68 £ 9.89 75.56 + 9.1 7192+ 1154
Sex 20F MF 14F B4F

There is no age difference among these groups based on a one-way ANOWA
{p = 0.0536) but the propartion of women in HC group (56.86%) was higher than

that of the AD (35.90%) or MC/! groups (36.67%).

Parcellation atlas: Harvard Oxford Cortical and Subcortical probabilistic atlas (113x113)

Image auisition info: Each subject underwent whole-brain MRI scanning on Tesla GE Medical Systems scanners.
T1-weighted SPGR(spoiled gradient echo) sequences (256 x 256 matrix; voxel size =1.2x 1.0x1.0mm 3; Tl =
400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11 < ), were collected as well as DWI (128 x 128 matrix; voxel
size: 2.7 x 2.7 x 2.7 mm 3 ; scan time = 9 min; more imaging details may be found at
http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf). 46 separate images were
acquired for each DWI scan: five T2-weighted images with no diffusion sensitization (b 0 images) and 41 DWIs (b =
1000 s/mm 2 ). The DWI protocol for ADNI was chosen after a detailed evaluation of different protocols that could
be performed in a reasonable amount of time; we reported these comparisons previously (Jahanshad et al., 2010;
Zhan et al., 2013a). All T1-weighted MR and DWI images were checked visually for quality assurance toexclude
scans with excessive motion and/or artifacts; all scans were included.

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: features

1. Raw features. All the values in the upper triangle of the matrices — 6328 (113 x 112/2) features overall;

2. Global threshold. Subset of previous features based on Top 5-40% largest elements of mean matrix across all
subjects (6328 features);

3. Individual binary threshold. Top largest values mask of the top 5-40% of individual matrix (6328 features);

4. PCA. First k principal components on raw features matrix, where k varies from 10 to 150. The reduced input matrix is
then used to perform classification;

5. GLRAM. Generalized low-rank approximation, which factorizes all the subject matrices into three components. That
is, for the matrix of each subject M. , it factorizes as M. =L x X. x R, where L € R?**and R € R*? are shared
orthonormal transformations for all matrices, and X. € R**Kis a reduced matrix. X. is the new feature representation
for classification. One important parameter in GLRAM is the reduced row/column dimensionality. Again, a range of
parameter values was investigated to seek the “best” option for the classification. The feature space is m?.

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: classification pipeline

— z-score normalization performed for each feature;

— To avoid class imbalance, authors constructed 20 balanced training/testing sample splits, as follows:
(a) Randomly draw 85% of the data from the smaller class for training, and the remaining 15% for testing.
(b) In the larger class, match the same number of training samples by a random subsampling, and the rest
are put in the test set;

— Classifier: sparse logistic regression;

— Main metric: ROC AUC.

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: post hoc statistical analysis

— The 95% confidence interval (ClI) for the AUC was computed and one-way analysis of variance
(ANOVA) was performed on the AUCs;

— Null hypothesis (H,) was: there is no significant difference in the AUCs from different tractography
algorithms;

— The experiment-wise alpha threshold was set to p < 0.05;

— All the p-values reported have been adjusted by SPSS with the appropriate correction for the effective
number of multiple comparisons used (Bonferroni correction). For instance, for a three-group experiment,
a pairwise comparison (i.e., a t-test) that yields a p-value of 0.016 would be considered significant at the
0.05 level, because 0.016 < (0.05/3).

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparlson matrices visualisation
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Comparison of averaged normalized brain networks from nine different
tractography algorithms, including (A) tensor-based FACT; (B) tensor-based
RK2; (C) tensor-based SL; (D) tensor-based TL; (E) ODF-based FACT; (F)
ODF-based RK2; (G) ODF-based PICo; (H) ODF-based Hough, and (I)
Ball-and-stick model based Probtrackx, from all 202 subjects.

In each network, each cell represents the connectivity between each pair of
ROIs; the ROl index runs from 1 to 113 from left to right and from bottom to
top. ROI names are detailed in the Supplement. Visually, brain networks
from different tractography algorithms may have similar patterns but in
reality, the recovered brain network varies, as shown by the value in the
randomly selected cell (11,107).

Selected pixel weights (x=11, y=107): 0.128, 0.137, 0.140, 0.148, 0.1, 0.112,
0.124, 0.05, 0.021.

Source: "Comparison of nine tractography algorithms for detecting abnormal structural brain nicuwuiks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: raw matrices

Confidence Interval for AUC
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FIGURE 3 | Ninety five percent confidence intervals [Cl) for the AUC theory, the higher the AUC value, the better the classification performance.
(classification accuracy) for three diagnostic tasks represented by Howsever, if the Cl of AUCs has some overlap, we cannot conclude that
the three color bars (blue, black, and red) for nine tractography one algorithm is better than the others, even if the mean AUCs are
algorithms. The red color means the AD vs. NC classification task, black numericaly different. As is evident from the three color bars' horizontal
colors denote AD ws. MCI, and blue ocolors indicate MCl vs. NC. The y-axis  positions, some classifications are mome dificult AD v. NC is the easiest,
indicates the tractography algorithms and x-axis shows the AUC value. In and MCI v. NC is the most difficult, perhaps in line with expectation.

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: raw matrices and thresholded

TABLE 3 | One-way ANOVA test on the classification performance of nine
tractography algorithms for three diagnostic tasks when using the raw

matrices as features.

Supplementary Table 2. One-Way ANOVA on AUCs computed from 9 traciography algorithm-
derived thresholded matrices. The threshold value for each tractography was different and we chose the
one with the lagest average AUC from 8 possible threshold values (0.05~0.40). Again the degree of
freedom for “Between Groups” is 9-1=8 and the degree of freedom for “Within Groups” is 9x20-9=171, so
our critical F value at g=0.05 level is 1.9929. Our computed F values in this table are all less than 1.9929,
which means there is no evidence to reject the HO, in other words, there are no statistical differences among
the AUCs from these 9 tractography algorithm-derived thresholded matrices in each diagnostic task, no

Diagnostic task Degrees of freedom F Sig.

AD vs. NC Betwsen groups a8 1.111 0.358
Within groups 17

AD vs. MCI Between groups 8 1.348 0223
Within groups 17

MClvs. NC Between groups 8 1.945 0.056
Within groups 17

The “F" column presents computed F score and the “Sig.” column gives the
p-value. Resufts with Sig. value < 0.05 are treated as nominally significant, so
no differences were detectable. “Batween Groups”™ represents sum of the sguared
dewviations from the mean batween groups, which captures vanability between each
group. “Within Groups” represents sum of the squared deviations from the mean
within groups, which captures vanability within each group. We have nine tractog-
raphy algorithms, so the number of degress of freedom for the Betwesn Groups
comparison is 9—1 = 8. And since we have 20 spiits for each algorthm, the num-
ber of degreas of freedom for the Within Groups comparison is 20x9—-9 = 171.
Since o = 0.056 and the number of degress of freedom = (8,771), we acoept Hy
if Fgam1 = 1.9929. All our three F-values (1.111, 1.348, and 1.945) are al less
than 1.8929, so we accept our Hg. In other words, there are no significant group
differences in these nine tractography algorthm-derived networks using the raw
matricas as features.

matter Global Threshold or Individual Binary Threshold.

Degree of Global Threshold | Individual Binary Threshold

Diagnostic Task freedom F Sig. F Sig.
Between Groups &

AD vs NC 1.296 245 431 B32
Within Groups 171
Between Groups 8

AD vs MCI 857 .54 1.583 A33
Within Groups 171
Between Groups i

MClvs NC 1.590 A31 1.906 062
Within Groups 171

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)




Connectome AD comparison: individual threshold

TABLE 4B | Post hoc comparison results for the Individual Binary Threshold method.

Diagnostic tasks Tractography algorithm (I} Threshold

AD vs. MCI Tensor-RK2 0.05
Hough 0.05
MCI ws. NC Tensor-TL 0.05
PICo 0.05

{J) Threshold

0.30
040
025
0.35
0156
0.35
040

Mean difference (I-J)

—0.08325
—0.08961
—0.10897
—0.10285
0.11037
0.12817
0.12654

Sig.

0.023
0.035
0.034
0.014
0.028
0.004
0.005

95% confidence interval

Lower bound

—0.01800

—0.1763

—0.2142
0.0109
0.0066
0.0234
0.0218

Upper bound

—0.0065
—0.0029
—0.0038
0.1848
0.2151
0.2329
0.2313

The “Sig.” column shows the SPSS adiusted p-value and only values balow 0.05 are treated as nominally significant (Please refer to the footnote for detailed explanation).
Only comparisons that passed Bonfermoni cormmection are shown here. 85% confidence interval is on the mean difference (I-J). Using the Individual Binary Threshold as the
feature extraction method, the AUCs from some tractography algorithms may be statistically affected by the threshold values chosen for specific diagnostic tasks.

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: PCA

TABLE 5B | Post hoc comparisons results.

Diagnostic tasks Tractography algerithm

AD vs. NG Tensor-RK2

AD vs. MCI Tensor-FACT
Tensor-RK2
Tensor-SL

Tensor-TL

ODF-FACT
Probtrackx

Hough

MCI vs. NC ODF-RK2
Probtracke

() PC number

15

20

10
10
10

15
20
10
15
10
10
15
20
25
30
35
40
45
50
10
15
40
10
15

(J) PC number

75

150
75

150
150
150
40

100
150
150
150
150
150
150
100
100
100
100
100
100
100
100
100
150
150
150
100
100

Mean difference (I-J)

0.16667
0.16759
0.15370
0.15463
0.14378
0.17437
0.12890
0.12009
0.19536
0.17532
0.12342
0.17099
0.14747
0.11424
0.14219
0.12236
0.10876
0.12500
0.13544
0.13397
0.10506
0.09726
0.09515
0.12418
0.11994
0.11920
0.12047
0.09728

Sig.

0.003
0.003
.01
0.010
0.022
0.016
0.017
0.038
0.000
0.000
0.030
0.001
0.013
0.019
0.000
0.000
0.004
0.000
0.000
0.000
0.006
0.019
0.026
0.008
0.014
0.012
0.002
0.041

95% confidence interval

Lower bound

0.0203
0.0302
0.0163
0.0173
0.0092
0.0150
0.0105
0.0026
0.0770
0.0569
0.0050
0.0383
0.0148
0.0084
0.0519
0.0320
0.0184
00347

0.0451
0.0436
0.0147
0.0069
0.0048
0.0154
0.0112
0.0125
0.0247
0.0016

Upper bound

0.3040
0.3050
0.2011
0.2820
02784
0.3338
0.2473
0.2394
0.3137
0.2837
0.2418
0.3037
0.2802
0.2200
0.2325
0.2127
0.1991
0.2153
0.2258
0.2243
0.1954
0.1876
0.1855
0.2329
0.2287
0.2259
0.2162
0.1830

Only tests that passed Bonferroni comection are shown here. Using PCA as a feature extraction method, the AUCs for some tractography algorithms are statistically

affected by the number of PCs for specific diagnostic tasks. Moreaver, a smaller number of PCs tends to give better parformance (higher AUC) than higher numbers of

PCs for these tractography algorithms when using PCA.

TABLE 6A | Statistical analysis results for classification performances
from nine tractography algorithms using PCA. (A) One-way ANOVA.

Task Degrees of freedom F Sig.

AD vs. NC Between groups 8 3.144 0.002
Within groups 17

AD vs. MCI Between groups 8 219 0.030
Within groups 17

MClvs. NC Between groups 8 2.728 0.007
Within groups 17

We have nine tractography algorthms, so the number of degress of freedom for
the Batwesan Groups comparison is 9—1 = 8. And since we have 20 spiits for each
algorithm, the number of degrees of freedom for the Within Groups comparison is
20x9—9 = 171. Since a = 0.05 and the number of degrees of freadom = (8,171),
we accept Hg if Fg 171 < 1.9929. All our three F-values (3.144, 2.191, and 2.728)
are larger than 1.9928, so we raject our Hy; in other word's, there are significant
differences in these nine tractography algorthms in classification using PCA to
extract features. However, for the task AD vs. MCI, no group comparison passes
Bonferroni comection in the post hoc tests.

Source: “Comparison of nine tractography algorithms for detecting
abnormal structural brain networks in Alzheimer’s disease” (Liang
Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: significant algorithms difference

TABLE 6B | Post hoc group comparisons.

Task {l) Tractography (J) Tractography Mean difference
algorithm algorithm {1-J)

AD ws. NC Tensor-SL ODF-FACT —0.09444
ODF-RK2 —0.08028

CMlvs. NC Probirackx Tensor-FACT 0.10109
Tensor-RK2 0.10091
Tensor-TL 0.08339
ODF-RK2 0.09348

Sig.

0.006
0.011
0.011
0.011
0.030
0.030

95% confidence interval

Lower bound

01741
—0.1700
00119
0.0117
0.0042
0.0043

Upper bound

—0.0148
—0.0106
0.1903
0.1901
0.1826
0.1827

The “Sig.” column show the SPSS adusted p-valus; only values 0.05 are treated as significant Only comparisons that passed Bonferroni correction are listed here.
For the task AD vs. NC, the dassification performance of tensor-SL is significantly poorer than that of ODF-FACT or ODF-RKZ. Interestingly, for the task MCI vs. NC,
Probtrackx has statistically better performance than the four deterministic tractography algarithms (tensor-FACT, RKZ, TL, and ODF-RKZ).

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Connectome AD comparison: main feature-algorithm differences

TABLE 8B | Post hoc comparisons.

Diagnostic Tractography (l) Feature exiraction method  {J) feature extraction Mean Sig. 95% confidence interval

tasks algorithm method difference (l-J)
Lower bound Upper bound

AD vs. NC Tensor-SL Individual binary threshold PCA 0.09259 0.005 0.0186 0.16866

Probtracks Raw featurs GLRAM 0.05833 0.042  0.0011 0.1155

Global threshold GLRAM 0.06206 0.021  0.0058 0.1202

AD vs. MCI Tensor-TL Individual binary threshold Raw feature 0.09900 0.020  0.0096 0.1884

ODF-RK2 PCA GLRAM 0.10348 0.007 0.0183 0.1887

Hough Individual binary threshold Raw feature 0.10612 0.007  0.0193 0.1930

Global threshold 0.08966 0.038 0.0028 0.1765

GLRAM 0.10232 0.010 0.0155 0.1802

PCA Raw feature 0.09768 0.017 0.0108 0.1845

GLRAM 0.09388 0.025 0.0070 0.1807

MClvs. NC PICo Individual binary threshold Raw feature 0.09697 0.036 0.0035 0.1204

The “Sig.” column show the SPSS adiusted p-value; only values 0.05 are treated as significant Only comparisons that passed Bonferroni commection are listed here.
Although some methods show better parformance for same tractography algorithms in some specific tasks, the trend is not consistent, and there is no universally optimal
method

Source: “Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease” (Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Zhin et al., 2015)



Can we combine tractography data to boost predictive power?

— Yes, according to “Discriminative fusion of multiple brain networks for early mild
cognitive impairment detection» (Wang et al.);

— Convex sum of 9 tractography algorithms boosted AUC to 0.89 from 0.66 by
best algorithm (Probtrackx);

— Averaged connectome from 9 algorithms performed worse than each
tractography individually (0.50 AUC);

— Concatenated data performed about the same as most algorithms (0.58 AUC).



Connectome fusion: pipeline
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Fig. 2. Overview of our network fusion framework. Multiple types of brain networks are computed by applying
different tractography methods to the participants’ diffusion MRI data [22]. Different brain networks are combined
using a sparse learning method and the optimal convex combination is used for classification. The combination
coefficients and the classifiers are simultaneously learned from the training data and cross-validated.

Source: “Discriminative fusion of multiple brain networks for early mild cognitive impairment detection” (Qi Wang, Liang Zhan, Paul M. Thompson, Hiroko H. Dodge, Jiayu Zhou)



Connectome fusion: experiment setting

— Dataset: 124 subjects including 51 normal elderly controls (NCs), 73 individuals diagnosed with early
mild cognitive impairment (eMCI);
— Atlas: Harvard Oxford Cortical and Subcortical Probabilistic Atlas (113x113);
— Algorithms: tensor (FACT, RK-2, TL, SL), ODF (FACT, RK2) and probabilistic (PICo, Hough,
Probtrackx);
— Data fusion method: convex sum of each of nine networks;
— Classifier: Logistic Regression with L -regularization (sparse LR) with loss depending on sum weights;
vlvﬂflli Z;l Uw, e, 7%, y:) + AW, ¢(w, e, 7;%:,y:) = log (1+exp (—y.,;(:lr.,;(T)Tw +¢)))
M
s.t. Zm:l T = 1T 2 05 ¥Tm
— Cross validation: 10 iterations of 10-fold;
— Baselines: B-CON (concatenated networks) and B-AVG (mean of all networks).

Source: “Discriminative fusion of multiple brain networks for early mild cognitive impairment detection” (Qi Wang, Liang Zhan, Paul M. Thompson, Hiroko H. Dodge, Jiayu Zhou)



Connectome fusion: results

AUC Sensitivity Specificity
DFUSE 0.89+0.09 0.84+0.16 0.77+0.07
B-CON 0.58+0.11 054+011 0.5440.10
B-AVG 0.50+0.15 0.56+0.18 0.48 +0.07
T-FACT 056x0.13 0.66=+0.19  0.4040.09
T-RK2 0.54+0.10 0.58=x0.18 0.49+0.06
T-SL 0.59+0.14 042+020 0.7940.06
T-TL 0.61+013 0484019 051+0.07
O-FACT 058+0.12 0.58+0.24 0.4340.09
O-RK2 0.56 +£0.13 0.60+0.27 0.47+0.06
PICo 0.58+0.11 054+0.16 0.5440.10
Hough 0.58+0.07 042+024 0.6140.08
Probt 066 +0.10 048+0.25 0.6940.11

Source: “Discriminative fusion of multiple brain networks for early mild cognitive impairment detection” (Qi Wang, Liang Zhan, Paul M. Thompson, Hiroko H. Dodge, Jiayu Zhou)

Main findings:

— DFUSE algorithm significantly outperformed all other
competing methods (p-value < 0.001);

— Probtrackx has the heaviest weight of 0.87 (all
elements of T range from 0 to 1), averaged over 10
iterations;

— The weights of T-TL, O-FACT, O-RK2 are consistently
Zeros;

— the predictive performance of the feature
concatenation (B-CON) does not even perform as well as
the best individual brain network. This may be because
there are too many features presented to the classifier
(over 56k), relative to the number of subjects (samples)
available to train it (~110).



How does field strength affect connectome weights?

— Connectivity matrices from whole-brain tractography tended to pick up a greater
density for some subcortical connections at 7T than at 3T, according to “Magnetic
Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity
Networks” (Zhang et al., 2012)

— We can expect that 7T data should better represent reality of neural pathways,
but further validation is needed. Field itself is not enough. Voxel size, numbers of
diffusion gradients, and diffusion weighting schemes on the local diffusion model

are also important.

— Paper is rather old, so there may be more up-to-date analysis.



3T vs 7T connectomes: protocols and demographics

MRI machine name

Siemens TIM Trio 3T

Siemens Magnetom 7T

PAT mode GRATPPA GRATTA
Acceleration factor PE 2 2
Isotropic voxel size (mm) 20 2.0
TR/TE (ms) 7800/82 5700/57
FOV (mm) 192 %192 256x 256
Diffusion weighting, b (sec/mm®) 1000 1000
Number of diffusion weighted images (DWT) 128 128
Number of non-diffusion weighted reference images (b images) 15 15
Total scan time (seconds) 1138 832
Dataset 1 23 subjects Age 23.75+2.62 Field strength 3T 7T

Sex 11 female Reconstruction method AC SOs
Dataset 2 9 subjects Age 73.95+12.79 Field strength aT 3T

Sex 7 female Reconstruction method AC SOS
Dataset 3 5 subjects Age 78.354+9.39 Field strength 7T 7ZE

Sex 5 female Reconstruction method SOS SENSE1

All scan protocols used single-spin echo DTI sequences, to allow for shorter TE times. Other consistently applied sequence parameters in-
duded an acquisition of 64 slices, 2-mm isotropic voxels, a b-value of 1000 sec/ mm?, 128 diffusion directions and 15 b=0 scans. TE and TR
times were set to be the fastest possible allowed by the system. The superior gradient performance of the 7T scanner allowed for significantly

shorter TE and TR times than could be achieved at 3T.

DW-MRI, diffusion-weighted magnetic resonance imaging; 505, sum-of-squares; AC, adaptive recombine; DTI, diffusion tensor imaging;

TR, time to repetition; TE, ime to echo.

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks” (Zhang et al., 2012)



3T vs 7T connectomes: methods

— Atlas: Harvard Oxford Cortical and Subcortical probabilistic atlas (113x113);
— Tractography algorithm: ODF-RK2 (all voxels with FA > 0.2);

— Spline filter was applied to each generated fiber. All duplicate and very short fibers (<10 mm) were
removed;

— SNR of the non-diffusion-sensitized images (b, )comparison between 3T and 7T;

— ROIl-based DTI-derived measures comparisons (fractional anisotropy, mean diffusivity, axial diffusivity,
radial diffusivity) — | won’t elaborate on that today;

— Network metrics depending on sparsity: Characteristic Path Length, Global Efficiency, Mean Clustering
Coefficient, Modularity, degree of small-worldness.

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks” (Zhang et al., 2012)



3T vs 7T connectomes: SNR differences

TasLe 3. SNE DirrerencEs IN HEAD-To-HEAD PrOTOCOL COMPARISONS

Dataset 1 3T-AC 7I-505 Paired T test P SNR;]T_AC{SI\I-R?T{.;OS
40829+ 1.1647 4.8307+1.5126 0.0158

Dataset 2 3T-AC 3T-505 Paired T test P SNRST-J\C{SNRST-EDS
40923+ 1.5521 4.0954+1.6011 0.5707
4.0783+1.1242 4.0172+£0.9190 0.6412

We listed the mean SNR for two protocols in each dataset, and the p value was computed from the Student’s paired T test. When this
p value <0.05 (e.g., 0.0158 for dataset 1), it means the SNR of 7T-505 is significantly higher than the SNR of 3T-AC in dataset 1; there were
no detectable differences between the two protocols in dataset 2 ( p=0.57) and dataset 3 (p =0.64). These results suggest that the field strength
is likely to play an important role in boosting the SNR. Mathematically, the different reconstruction methods should give rise to some differ-
ences in SNR, but our failure to detect an SNR difference in datasets 2 and 3 suggests that reconstruction methods alone do not explain the
observed boost in SNR at the higher field strength. The bold values highlight comparisons that passed the significance threshold.

SNR, signal-to-noise ratio.

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks” (Zhang et al., 2012)



3T vs 7T connectomes: fiber number and length

TasLgE 5. CoMmMPaRISON OF WHOLE-BRAIN FIBER TRACTOGRAPHY SUMMARY PARAMETERS
BErweeN ScannNiNG ProTocoLs, Across THREE DATASETS

Dataset 1
Fiber number Max fiber length Mean fiber length
3T-AC 34582 +2089 170.16 £18.11 mm 35.294+ 238 mm
7T-505 3561812216 167.90 £15.63 mm 36.86+ 2.56 mm
Paired T test p value (3T-AC <7T-50S) 0.0333 0.9349 0.0411
Dataset 2
Fiber number Max fiber length Mean fiber length
3T-AC 30736+4080 173.02 £20.94 mm 3457+ 249mm
3T-50S 30262 +4008 176.08 £21.98 mm 34,64+ 258mm
Paired T test p value (3T-AC <3T-S0S) 0.5964 0.3831 0.4765
Dataset 3
Fiber number Max fiber length Mean fiber length
Source: “Magnetic
7T-SENSE1 31907 +£3416 170.04 £20.92 mm 31.93+2.05mm Effects on Diffusion Measures
Paired T test p value (7T-SOS< 7T-SENSE1) 0.1035 0.0841 0.5465 and Brain Connectivity
Results are averaged across the subjects in each dataset. The minimum fiber length was set to 10 mm for each. To correct for multiple com- Networks” (Zhang et al.,
parisons, the Bonferroni corrected significance threshold was set to p<0.05/3. All results are null if properly corrected for multiple compar- 2012)

isons. The bold values highlight comparisons that passed the significance threshold.



3T vs 7T connectomes: connectivity

dataser

Moan Connoctivity
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FG.3. Differences in measured brain connectivity pattems. The first three rows show the mean connectivity pattern (first tivo
columns) and cormectivity difference between protocols for the three datasets (in Table 1) Within each row, the exact same
stibjects are scanned—only the scanner or the reconstruction methods differ. All fiber counts are normalized to the whole
brain fiber count, so this difference only refers to the proportional representation of connections, which leads to the assignment
of weights in the overall network. In general, connectivity patterns are very similar across protocols. In the maps of mean con-
nectivity across all subjects, red colors indicate a stronger cormection (more fibers detected) and blue colors denote a weaker
connection (fewer fibers); in the cormectivity difference maps, a red color indicates a positive difference and a blue color rep-
resents a negative difference. The last row shows connections that passed false discovery rate (FDR) (q=0.05) in paired Stu-
dent’s t-tests when comparing 71-505> 3T-AC in dataset 1 (i.e, connection density was higher at 7T-508). No connections
passed FDR (g=0.05) in datasets 2 or 3—the tests of effects of reconstruction methods—or when comparing 3T-AC >7T-
506 (Le., where connection density was higher at 3T-AC) in dataset 1. Each red dot in the plot represents one ROI, numbered
amnrd.mg to the indexin Table 2. The line between two red dots represents the fiber connection between them (in reality, these
are curved 3D lines, but a straight line is used for visual clarity). Overall, the higher field strength (7T) enhanced the apparent
strength of some subcortical connections, that is, proportionally more fibers were detected in the whole brain fractography.

Source: “Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks”
(Zhang et al., 2012)



3T vs 7T connectomes: network metrics
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Source: “Magnetic Resonance Field Strength Effects on
Diffusion Measures and Brain Connectivity Networks” (Zhang et
al., 2012)



How does spatial and angular resolution affect connectome weights?

— Spatial and angular resolution affected the computed connectivity for narrower
tracts (internal capsule and cerebellum), but also for the corticospinal tract,
according to “How do spatial and angular resolution affect brain connectivity maps
from diffusion MTI” (Zhang et al.);

— Data resolution affected the apparent role of some key structures in cortical
anatomic networks;

— Care is needed when comparing network data across studies, and interpreting
apparent disagreements among findings.



Spatial/angular resolution: data used

— Dataset 1 (Mayo). 8 healthy subjects (age: 32.0 years £ 3.9SD; 4 males).

Table 1. Imaging protocols for the Mayo dataset

Protocol 1 (P1)

Protocol 2 (P2)

Isotropic voxel size (mm)

e

2.5

Prescribed matrix 128 x 128 128 x 128
Number of slices 40 48
Number of DWI 48 37
Number of b, images 4 4

TR (ms) 7750 0825
b-value (s/mm°) 1000 1000

— Dataset 2. Healthy male subject (32 years old) was scanned at multiple spatial
resolutions (2x2x2, 2.5x2.5x2.5, 3x3x3 and 4x4x4 mm 3 ) with axial DTI using the
following acquisition parameters: TR=8000 ms, TE=83 ms, 128x128 matrix, 64
slices, b-value=1000 s/mm 2, one baseline (b, ) scan and 12 (low!) gradient

directions.




Spatial/angular resolution: methods

— Angular resolution (dataset 1). DWIs subsampled from 48 to 15. Sub-sampling was based on
maximizing the total angular distribution energy of the remaining set of k gradients, to optimize the
uniformity of the spherical sampling;

— Spatial resolution (dataset 1, P2 protocol). Authors gradually reduced data spatial resolution by
downsampling its isotropic voxels of side 2.5 mm to 10 mm (0.1 mm step) with linear interpolation;

— Spatial resolution (dataset 2). Variations across 4 voxel sizes;

— White matter connectivity: 50 ROIs ICBM young adult DTI-81 atlas (there is some criticism of this
atlas). Connectivity was then computed from a fast-marching based method

— Cortical connectivity: 70 ROIs standard FreeSurfer Atlas. Tensor-FACT fiber tracking.



Spatial/angular resolution: angular effects

I
0.9
0.8
0.7
{0.6
0.5
0.4

0.3

5 10 15 20 235 30 35 40 45 50
Fig. 2. Angular resolution affects white matter connectivity

measures. The names of the ROIs are listed in Table 2. In the red
cells, varying the angular resolution of the scan affected the
proportion of fibers apparently connecting the two regions of
interest (on the x and y axes). Data show the standard deviation of
the computed proportion of fibers.

— Figure shows the standard

deviation of the connectivity matrix elements
among the connectivity maps calculated from
subset 15 to subset 48; this standard
deviation was computed in each of the 8
subjects, and then averaged across all 8, to
infer general patterns.

— Some of the thinnest (narrowest) fiber
tracts — the cerebellar ICP and SCP, and the
internal capsules — were strongly affected by
altering the angular resolution. Even some of
the major pathways, including the apparent
connections of the cortico-spinal tract with the
ACR, ALIC and SFO were also quite severely
influenced



Spatial/angular resolution: isolating spatial resolution effect

,

S0
45 09
40 0.8
35 0.7
30 . 0.6
25 l 40,5
20 104
15 L 03
10 02
0.1
0

5 10 15 2 23 30 33 &0 &8 %2
Fig. 3. White matter connectivity measures depend on the

spatial resolution of the scans. The names of the ROIs are listed
in Table 2. Here the thinnest tracts — the internal capsules and
cerebellar peduncles — are among those whose connectivity is least
stable as the spatial resolution of the DTI scan is changed. The
least stable tracts are shown in red.

— Figure shows the standard deviation
of connectivity matrix elements

across connectivity maps calculated at
all voxel sizes in the range

2.5-10 mm, averaged across all eight
subjects.

— The computed WM connectivity in
all tracts and all regions is affected
by partial volume effects. Greatest
differences were found in the
connections of the medial lemniscus,
cerebellar peduncles, internal
capsules, which are among the
thinnest tracts.



Spatial/angular resolution: spatial effects from dataset 2
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Fig. 4. White matter connectivity measures depend on the SNR

and spatial resolution of the scans. The names of the ROIs are
listed in Table 2. Red matrix entries show connections that vary
the most as spatial resolution was changed, in one subject scanned
at 4 spatial resolutions. Many connections differ with spatial
resolution; unlike Fig. 3, which downsampled the scan data
without SNR varying.

— Figure shows the standard deviation
of connectivity among connectivity
maps calculated at 4 different isotropic
spatial resolutions (2, 2.5, 3 and 4);

— These maps show more differences
than those in previous figure, as signal
averaging was used to boost the SNR
for the scans with smaller voxels.



Spatial/angular resolution: spatial effects from dataset 2
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Fig. 5. Cortical connectivity variation within a single subject
scanned at 4 spatial resolutions. The names of the ROIs are listed
in Table 3 (1-35, left hemisphere; 36-70, right hemisphere, e.g.,
ROIs 2 and 37 are the caudal anterior cingulate in the left and right
hemispheres, respectively).

— Figure shows the standard deviation
of elements in cortical connectivity
matrices for 70 ROls in the 12-direction
dataset, at 4 different spatial
resolutions.

— The computed pattern of cortical
connectivity heavily depends on the
spatial resolution, with less apparent
connectivity in scans with large voxels.
The cortical connection between
parahippocampal and fusiform gyri,
and between corresponding structures
in the left and right hemispheres

were most affected by spatial
resolution



Overall conclusion

— Tractography algorithm choice is important;

— There is no best tractography algorithm in terms of predictive power;
— We can combine tractography data to improve predictions;

— Field strength matters, but we can work with current 3T tracks;

— Spatial and angular resolution affects connectome weights.



Thank you!

to.dmitry.petrov@gmail.com

va.dodonova@mail.ru
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