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Abstract
We tackle the problem of brain network classifica-
tion with machine learning algorithms using spec-
tra of networks’ matrices. First, linear and tree-
based models are trained on the vectors of sorted
eigenvalues of the adjacency matrix, the Laplacian
matrix and the normalized Laplacian. Next, SVM
classifier is trained with kernels based on informa-
tion divergence between the eigenvalue distribu-
tions. The latter approach gives promising results
in the classification of autism spectrum disorder
versus typical development and of the carriers ver-
sus noncarriers of an allele associated with the high
risk of Alzheimer disease.

Graph Spectra
One way to encode essential graph properties in a compact
manner is to compute spectrum of its matrices:

• Adjacency matrix, the n × n matrix with entries
aij , where aij is the weight between the respective
nodes, n is the number of nodes.

• The graph Laplacian: L = D −A,
where D is a diagonal matrix of weighted node de-
grees: di =

∑
j aij .

• The normalized Laplacian: L = D−1/2LD−1/2

We plot spectra distributions
of these matrices for the group
average brain networks (see
data description below) and
the spectra of two random
graphs: Erdös-Rényi (ER)
graph and the Barabási-Albert
(BA) preferential attachment
network. The distributions for
human brain connectivity ma-
trices are very close; both differ
from those obtained with the
random graphs.

Data
UCLA Autism dataset includes DTI-based connectiv-
ity matrices of 51 high-functioning autism spectrum dis-
order (ASD) and 43 typically developing (TD) subjects.
Nodes for connectomes are defined based on a large meta-
analysis of fMRI studies; this approach produces 264 equal-
size brain regions. Network edges result from brain deter-
ministic tractography.

UCLA APOE-4 dataset includes DTI-based connectiv-
ity matrices of 25 carriers and 30 noncarriers of the APOE-
4 allele associated with the higher risk of Alzheimer’s dis-
ease. To define network nodes, each brain is partitioned
into 110 regions using the Harvard-Oxford subcortical and
cortical probabilistic atlases. Network edges are obtained
using the FACT algorithm; raw fiber counts are adjusted
for the unequal region volumes.

Network construction
For each dataset, we apply three weighting schemes:

• Original matrices scaled by: ascaledij =
aij∑
i,j
aij

.

• Binarized weights: abinarizedij = 1ifaij > 0, 0 else.

• Original edge weights scaled by the Euclidean dis-
tance lij between centers of the regions i and j:
aweightedij =

aij
l2
ij

, next scaled by the sum of elements.

Results: kernel-based classification
The basic idea of our proposed approach is to measure the pairwise differences between
the distributions of graph spectra, construct kernels based on these differences and use
them in an SVM classifier.

For two probability distributions with densities p(x) and q(x) theKullback-Leibler (KL)
divergence is: KL(p||q) =

∫∞
−∞ p(x)log p(x)q(x)dx. The KL kernel is obtained by exponen-

tiating the symmetric KL divergence: KKL(p, q) = e−α(KL(p||q)+KL(q||p)).

The Jensen-Shannon (JS) divergence is: JS(p||q) = 1
2 (KL(p||r) + KL(q||r)), where

r(x) = 1
2 (p(x) + q(x)). We compute JS kernel by: KJS(p, q) = e−α

√
JS(p||q).

These kernels work with the probability density functions restored from the samples; we
use sample frequencies as a proxy for the probabilities and vary the number of bins. We
also vary the parameter α used to compute a kernel and a penalty parameter of the SVM
classifier. A figure shows the result for UCLA Autism (left) and UCLA APOE-4 (right).

The best classification result on the UCLA Autism dataset is obtained with the KL-
based kernel on the normalized Laplacian spectra of the matrices with the original
weights (ROC AUC 0.817±0.017). For the UCLA APOE-4 dataset, the highest
classification quality is achieved with the KL-based kernel on the scaled Laplacian
spectra of the binarized matrices (ROC AUC 0.834±0.022).

For these best models, we explore how the results
change depending on each of the three parameters.
The ROC AUC values remain smooth and almost
constant with respect to values of α and the SVM
penalty. However, the graph that plots the results
as a function of the number of bins shows that the
algorithm is highly sensitive to the procedure
of density reconstruction.

Baseline: classification based on feature vectors
We produce the following sets of features: bag of edges (the vectorized upper triangle of
the adjacency matrix), weighted node degrees, and sorted eigenvalues of A, L and L.
We run linear (linear SVM and logistic regression with elastic-net regularization)
models and boosted decision trees. A table below shows the mean ROC AUC values
obtained over 100 runs of the algorithm with different 10-fold cross-validation splits (top
and bottom rows in each cell refer to best linear and nonlinear models, respectively).

Features UCLA Autism UCLA APOE-4
Original Binarized Weights by Original Binarized Weights by
weights weights l2 weights weights l2

Edges 0.525 0.515 0.531 0.552 0.558 0.550
0.595 0.510 0.523 0.570 0.563 0.520

Degrees 0.539 0.515 0.545 0.550 0.550 0.631
0.534 0.515 0.754 0.548 0.545 0.704

A spectra 0.515 0.509 0.516 0.550 0.550 0.550
0.687 0.506 0.647 0.717 0.780 0.533

L spectra 0.585 0.515 0.534 0.550 0.550 0.604
0.501 0.508 0.581 0.525 0.638 0.512

L spectra 0.514 0.507 0.515 0.550 0.689 0.592
0.556 0.504 0.638 0.584 0.647 0.506

For the UCLA Autism dataset, the best result is obtained with the boosted decision
trees trained on the weighted node degrees. For the UCLA APOE-4 dataset, the
best result is achieved with the boosted decision trees on the adjacency spectra.
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