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Abstract

We propose a data prepossessing method that combines
geometric and topological connectome normalizations and
significantly improves classification results. We validate
this approach by performing classification between autism
spectrum disorder (ASD) and typical development (TD)
connectomes. We demonstrate a significant enhance-
ment in performance using weighted node degrees
of normalized connectomes over the best model trained
on baseline features.

Normalizations

We use three different weighting schemes. First, weights
a;; from original connectomes. Second, we obtain binary
weights: ai?j = 11 a;; > 0, O else. Finally, we propose
weighting by squared distance between nodes (ge-
ometric normalization):
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where [;; 1s the Euclidean distance between centers of re-
ogions ¢ and 7, which are the same for each subject. Then
we apply weighted communicability normalization [1] to
each of the three weighted sets of connectomes:
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where w;; 1s weight of edge between nodes ¢ and 7; d; 1s
weighted degree of node 7. For purpose of comparison,
we also work with the respective sets of non-normalized
weighted connectomes. Hence, a combination of three
weighting schemes and two normalization strategies pro-
duces six datasets.

Features

For each of these six datasets we report results for 264
weighted node degrees as feature vectors. To pro-
duce an outer baseline, we calculate six global net-
work metrics used by the authors of the dataset [2]:

1. Weighted clustering coefficient:
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where t; 1s the number of triangles for the node 2.
2. Characteristic path length:
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where g;; is the length of the shortest path (geodesic) be-

tween the vertices ¢+ and j.

3. Normalized CC: \ = Cg ¢ - where CC,.,,,q 1S the aver-

age CC from simulated random networks.

4. Normalized CPL: v = CgfL = where CPL,,,,q 1s the

average CPL from the same random networks.

5. Small-worldness: o = %

6. Modularity: Q = = D il A didj](?(cz-cj), where m

2m 2m
is the sum of weighted edges in the network, and c is the

community.

Data

We use publicly available UCLA autism dataset [3]|. It
includes DTI-based connectivity matrices of 51 high-
functioning ASD subjects (6 females) and 43 TD subjects
(7 females). 264 nodes of the connectomes were defined us-
ing parcellation scheme proposed by Power et al. |[4]| based
on a large meta-analysis of tMRI studies combined with
whole brain functional connectivity mapping.

Results

We perform binary classification task ASD vs TD on each of the seven datasets described
above. We use four classifiers: logistic regression; SVM with linear kernel;
random forest, and boosted decision trees (BDT). For linear methods we scale
features with min-max scaling and apply elastic net regularization. Prediction quality of
algorithms is measured by area under the receiver operating characteristic curve (ROC
AUC). To avoid overfitting we test models with the best parameters on 100 10-fold splits
and report results in terms of ROC AUC distributions.
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Figure 1: Lett: best models’ results on each of seven sets of features. Right: performance of
classifiers on the best set of features — weighted node degrees ot the connectomes normalized
by proposed combination.

As seen in Figure 1 combination of normalization by distance and topological
normalization gives best classification performance on weghted node degrees.
Best model (linear SVM) on this set of features performs (0.77 ROC AUC) significantly
better (p = 7.8 x 10718, Wilcoxon test with Bonferroni post-hoc correction) than the
best model (BDT) on the baseline feature set with 0.66 mean ROC AUC. All pairwise
differences between the results on our datasets and the baseline are significant (Wilcoxon
test on ROC AUC values with Bonferroni post-hoc correction has p-values less than 1075,

except the difference between the baseline and the degrees on normalized original weights
with p = 0.028).
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Figure 2: Left: Effects of regularization in terms of ROC AUC values for linear SVM and
LR for 101 [{-ratios from O to 1 in 0.01 increments with a’s fixed at 0.01 for SVM and
0.0008 for LR. Right: Zone centers in their physical coordinates (axial view). Node color
represents mean absolute SVM weight of the respective node. Node size is proportional
to group average node degrees on the best set of features.

It is possible that we found a specific pattern for this particular classification task. For
example, short connections may be more important for ASD patients. If you have data
to test our pipeline or suggestions for collaboration, please contact me at the
conference or by email to.dmitry.petrov@gmail.com.
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