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Overview
What has been done

 
• We considered binary classification task for Autism Spectrum

Disorders and Typically Developing Groups (94 subjects, 51
ASD and 43 TD) based on structural connectomes

• We generated about 500 different sets of features, using
different combinations of connectome weights,
normalizations and graph metrics

• We found new simple features and classification model that
yield 0.8 ROC AUC score on evaluation which is comparable to
published studies
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Problem statement
What is connectome

Connectome is graph which represents structural or functional
connections between anatomically distinct brain areas.
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Problem statement
Connectome classification challenge

 We consider binary classification task – norm vs pathology on
connectomes. It has several major challenges:

• High dimensionality(~1000 features),
• Small samples (~100 subjects)
• Features are highly correlated
• Most of the machine learning algorithms deal with feature

vectors, not matrices
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Dataset
ASD vs TD classification

 
• UCLA high functional autism dataset, available at

http://umcd.humanconnectomeproject.org/
• 94 subjects, 264×264 adjacency matrices
• ASD – 51 subjects (6 females), age 13,0 ± 2,8 years
• TD – 43 subjects (7 females), age 13,1 ± 2,4 years
• For each zone center there are also 3D-coordinates
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Dimensionality reduction
Standard methods just doesn’t show simple structure in our data

Classification performance is very poor – 0.6 ROC AUC at best

PCA – explained variance ratio PCA – first two components
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Feature generation
Adjacency matrix processing pipeline

Example: aij ⇒ wij =
aij
d2ij

⇒ w′
ij =

wij√
deg(i)deg(j)

⇒ node degrees
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Feature generation
Weights estimate connections importances

• Original: aij
• Binary: bij = 1, if aij > 0, 0 – else.

• Binary normalized by distance: bij
l2ij

• Rooted: √aij.

• Original divided by square distance: aij
l2ij

.

• Rooted weights divided by distance:
√aij
lij

.

Notations: aij – original matrix weights, lij – distances between zone
centers. Bold – proposed by me.
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Feature generation
Normalizations turn different subjects to one scale and also provide
connection importances

We used the following normalizations:
• No normalization at all.
• By sum: aij∑

i,j aij
.

• By max: aij
maxi,j aij

• By sum + bymax.
• Spectral: aij√

deg(i)deg(j)
.

• Spectral + bymax.
• Random walk: pij =

aij∑
j aij

Notations: aij – original matrix weights, deg(i) – degree of node i.
Bold – proposed by me.
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Feature generation
Bags of edges

Most simple way – unfold matrix into vector. We used the following
weights for bags of edges:  

• Weights after weighting/normalization
• Shortest path matrix weights
• Random walk matrix weights:

Wα = (I− αP)−1.

Notations: I – identity matrix, P – random walk matrix obtained
by random walk normalization. α were given one of three
values 0.2, 0.5 or 0.8.
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Feature generation
Local undirected metrics

Each metric provides 264 values (by number of nodes):  
• Weighted node degrees
• Average neighbourhood node degrees
• Closeness centrality
• Betweenness centrality
• Eigenvector centralities
• Number of triangles around node
• Clustering coefficient
• Eccentricity
• Characteristic path length
• Efficiency
• Local efficiency
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Feature generation
Global undirected metrics

Each metric represent global aspect of the graph:  
• Averaged local metrics from previous slide
• Density
• Transitivity
• Degree assortativity
• Graph weighted assortativity
• Largest clique size
• Mean/sum of weights in largest clique
• Radius
• Diameter
• Number of graph centers
• Index of graph center (if there is one)
• Algebraic connectivity
• Freeman centralization: degree, betweenness, closeness,

eigenvector
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Feature generation
Common directed metrics

For matrices obtained by random walk normalization we also
calculated common directed metrics  

• Node in-degrees
• PageRank
• Hubs
• Authorities
• Stationary distribution vector
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Feature generation
Custom directed metrics

 We considered negative logarithms of random walk probabilities:

wp
ij = − ln pij.

On these matrices we calculated shortest path matrix and then
calculated:

• In- and -out efficiencies
• In- and out- degrees
• In- and out- characteristic path lenghts
• In- and out- eccentricities
• In- and out- closeness centralities.
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Feature generation
Baseline metrics

To produce an outer baseline, we calculate six global network
metrics used by the authors of the dataset. These features were
computed for binarized networks:

• Weighted clustering coefficient
• Characteristic path length
• Normalized clustering coefficient
• Normalized characteristic path length
• Small-worldness
• Modularity
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Machine learning
Classifiers

We considered classifiers with feature selection – regularized linear
and tree ensembles:  

• Linear classifiers: Logistic regression, SVM and SGD with
modified Huber loss. For all of them elastic net regularization
was applied.

• Tree based classifiers: Adaboost on trees, gradient boosted
decision trees (xgboost library), random forest.
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Machine learning
Model evaluation

 
• Performancemetric. ROC AUC.
• Hyperparameter optimization. Grid search based on 10-fold

cross-validation (CV) with fixed random state.
• Best models evaluation. 50 iterations of 10-fold CVs with

fixed random states.
• Selectedmodels additional evaluation. 100 iterations of

10-fold CVs with fixed random states. Combination of
predictions for different folds were combined to produce
prediction for all sample
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Results
Top-10 scores after evaluation

Proposed custom weights provided best results after evaluation on
different features!

Weighting Norm Features Classifier Mean AUC Std AUC

rootwbydist sum undirected node local efficiency XGB 0.79 0.17

wbysqdist no norm directed local ’in efficiency’ XGB 0.77 0.15
wbysqdist spect directed local pagerank_node SVC 0.77 0.17
sqrtw spect + max undirected node Barrat neighborhood degree XGB 0.76 0.15
sqrtw spect undirected node Barrat neighborhood degree XGB 0.76 0.15
wbysqdist spect undirected node degree SVC 0.76 0.18

wbysqdist no norm directed node ’in efficency’ LR 0.76 0.17
wbysqdist sum undirected node degree XGB 0.76 0.16
wbysqdist spect directed node pagerank SVC 0.75 0.17
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Results
ROC AUC boxplots and elastic net l1-ratio
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Results
Precision and recall boxplots
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Results
Most important zones visualiztion

Most important nodes according to SVM weights. Size reflects node
degree.
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Conclusion and discussion

 
• Dimensionality reduction didn’t show simple structure in data
• We found that combination of weighting by square distance

and spectral normalization gives 0.8 ROC AUC score for linear
SVM

• It is comparable to published studies and these features with
model are simple and interpretable (which is nice)

• Due to small sample size and large feature set it is possible that
we overfitted. Additional confirmation is needed
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Appendix
Undirected metrics description

 Weighted degree
kWi =

∑
j∈V

wij. (1)

Average weighted neighborhood degree

kWnn,i =

∑
j∈V wijkWj
kWi

. (2)

Closeness centrality Inverse of average weighted distance to other
nodes:

(lWi )
−1 =

n− 1∑
j∈V,j ̸=i d

W
ij
, (3)

where dWij is weighted shortest path length between nodes i and j.
Note that because we deal with weighted networks, normalization
by (n− 1) does not guarantee maximum centrality value of 1.
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Appendix
Undirected metrics description

Betweenness centrality
Quantifies the number of times a node acts as a bridge along the
shortest path between two other nodes (Freeman [?]). We use the
weighted version with shortest paths being computed for the
weighted graph:

bi =
2

(n− 1)(n− 2)

∑
h,j∈V

h ̸=j,h̸=i,j ̸=i

ρhj(i)
ρhj

, (4)

where ρhj is the number of weighted shortest paths between h and
j, and ρhj(i) is the number of weighted shortest paths between h
and j that pass through i. Again, note that because we deal with
weighted networks, normalization by 2

(n−1)(n−2) does not
guarantee maximum centrality value of 1.
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Appendix
Undirected metrics description

Eigenvector centrality
Gives high values to vertices that are connected to many other
well-connected vertices (Bonacich, 1986):

eci = vi, (5)

where v is eigenvector, corresponding to the largest eigenvalue of
AW.
Due to the theorem of Perron–Frobenius, there exists an
eigenvector of the maximal eigenvalue with only nonnegative
(positive) entries. Eigenvector centrality gives a kind of ‘relative
centrality’ within the graph rather than an absolute value with
respect to what is possible.
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Appendix
Undirected metrics description

Weighted number of triangles

tWi =
1

2

∑
j,h∈V

(ŵijŵihŵjh)
1
3 . (6)

Important. ŵij stands for normalized weights here: all weights are
divided by the maximum weight.
Clustering coefficient The problem here is that there are different
possible generalizations of the clustering cooefficient to weighted
graphs. The one used here is described in Saramäki et al. (2007).
This is the formula implemented in NetworkX, and also the one
given in Rubinov and Sporns (2010):

cWi =
2ti

ki(ki − 1)
, (7)

where tWi is the weighted number of triangles for the node i.
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Appendix
Undirected metrics description

Eccentricity The eccentricity ecc(i) of node i is the greatest
weighted shortest path length from node i to any other node:

eccWi = max
j∈V,j ̸=i

dWij . (8)

Characteristic path length
Average distance between node i and all other nodes:

lWi =

∑
j∈V,j ̸=i d

W
ij

n− 1
, (9)

where dWij is weighted shortest path length between nodes i and j.
Note that this is the inverse of closeness centrality (and vice versa).
Efficiency Weighted node efficiency is computed as the mean
inverse shortest path length from node i to all other nodes:

eWi =

∑
j∈V,j ̸=i(d

W
ij )

−1

n− 1
, (10)

where dWij is weighted shortest path length between nodes i and j.Dmitry Petrov Higher School of Economics June 14, 2016 5 / 23



Appendix
Undirected metrics description

Local efficiency
Local efficiency was introduced by Latora and Marchiori (2001) as a
measure that reveals how much the system is fault tolerant, i.e. how
efficient the communication is between the first neighbors of i
when i is removed. Hence, they define the local efficiency as the
average efficiency of the local subgraphs induced by the first
neighbors of i. Latora and Marchiori state that this definition is valid
both for unweighted and for weighted graphs. Thus, the proposed
metrics seems to be:

(eloc)Wi =

∑
(j,h)∈Ei(d

W
jh(Gi)

−1

ki(ki − 1)
, (11)

where Gi is a subgraph induced by the first neighbors of i, Ei is the
set of edges of this subgraph.
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Appendix
Undirected metrics description

However, Rubinov and Sporns (2010) propose another
generalization of local efficiency to weighted graphs:

(eloc2)Wi =

∑
(j,h)∈Ei(wijwih(dWjh(Gi)

−1)1/3

ki(ki − 1)
. (12)

This second generalization, however, looks contrintuitive. Why
should weights wij and wih contribute to the estimate of how
efficient the communication is between the first neighbors of i
when i is removed? Still, both versions of local efficiency were
implemented.
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Appendix
Undirected global metrics description

Graph characteristic path length This is the average node-level
characteristic path length:

LW =
1

n

∑
i∈V

lWi (13)

Graph global efficiency
This is the average node-level efficiency:

EWglobal =
1

n

∑
i∈V

eWi (14)

Dmitry Petrov Higher School of Economics June 14, 2016 8 / 23



Appendix
Undirected global metrics description

Graph local efficiency
This is the average node-level local efficiency (recall that there are
two versions of them):

EWlocal =
1

n

∑
i∈V

(eloc)Wi (15)

Graph clustering coefficient
This is the average node-level clustering coefficient:

CW =
1

n

∑
i∈V

cWi (16)
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Appendix
Undirected global metrics description

Graph transitivity
Weighted graph-level transitivity is defined by:

TW =

∑
i∈V 2t

W
i∑

i∈V ki(ki − 1)
(17)

Graph density
Weighted graph density is defined by:

DW =

∑
i,j∈V wij

n(n− 1)
(18)
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Appendix
Undirected global metrics description

Graph assortativity by weighted degree
This is Pearson correlation coefficient of weighted degrees between
pairs of connected nodes (Newman, 2003):

r =
|E|−1

∑
(i,j)∈E k

W
i k

W
j −

[
|E|−1

∑
(i,j)∈E

1
2(k

W
i + kWj )

]2
|E|−1

∑
(i,j)∈E

1
2((k

W
i )

2 + (kWj )2)−
[
|E|−1

∑
(i,j)∈E

1
2(k

W
i + kWj )

]2 .
(19)
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Appendix
Undirected global metrics description

Graph weighted assortativity as in Rubinov and Sporns (2010)
This is another generalization of the assortativity coefficient to
weighted networks, described by Rubinov and Sporns (2010). They
refer to it as a modification from Leung and Chau (2007):

r =
|E|−1

∑
(i,j) ŵijkWi k

W
j −

[
|E|−1

∑
(i,j)

1
2 ŵij(kWi + kWj )

]2
|E|−1

∑
(i,j)

1
2 ŵij((kWi )2 + (kWj )2)−

[
|E|−1

∑
(i,j)

1
2 ŵij(kWi + kWj )

]2 .
(20)

Note that normalized weights (divided by the maximum weight in
the network) are used here.
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Appendix
Undirected global metrics description

Maximal sum of weights of the largest clique
Let G′ be a set of the largest complete subgraphs of the network,
m = |G′|, V′k the set of nodes of G′

k. Maximal sum of weights of the
largest clique is defined by:

CLWmax = max
G′
k

∑
i,j∈V′k

wij. (21)

Mean sum of weights of the largest clique
Mean sum of weights of the largest clique is defined by:

CLWmean =

∑
G′
k

∑
i,j∈V′k

wij

m
. (22)

Graph diameter This is the value of the greatest eccentricity:

diamW = max
i∈V

eccWi . (23)
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Appendix
Undirected global metrics description

Graph radius
This is the value of the smallest eccentricity:

radW = min
i∈V

eccWi (24)

Number of graph centers This is the number of nodes i such that
radW = eccWi .
Index of graph center (if a single vertex)
If the number of graph centers equals 1, the index i is returned
(note that indexes start with 0). Else, NaN is returned. Note that this
is the only feature that intentionally includes NaNs.
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Appendix
Undirected global metrics description

Graph algebraic connectivity The algebraic connectivity of a
graph G is the second-smallest eigenvalue of the Laplacian matrix
of G, where the elements of the Laplacian are given by:

LaplacianWij =

{
−wij if i ̸= j,
kWi if i = j.

(25)
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Appendix
Undirected global metrics description

Freeman centralization: degree, betweenness, closeness,
eigenvector
The centralization of any network is a measure of how central its
most central node is in relation to how central all the other nodes
are. Centralization measure then (a) calculates the sum in
differences in centrality between the most central node in a
network and all other nodes, and (b) divides this quantity by the
theoretically largest such sum of differences in any network of the
same size:

CF =
∑

i∈V maxi∈V centralityi − centralityi
maxG

∑
i∈V maxi∈V centralityi − centralityi

. (26)
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Appendix
Baseline features description

To produce an outer baseline, we calculate six global network
metrics used by the authors of the dataset [?]. Note that these
features are computed for binarized networks, hence only
non-weighted edges aij appear below:
Weighted clustering coefficient

CC =
1

n

∑
i∈V

2ti
di(di − 1)

, (27)

where ti is the number of triangles for the node i.
Characteristic path length

CPL =
1

n

∑
i∈V

∑
j∈V,j ̸=i gij
n− 1

, (28)

where gij is the length of the shortest path (geodesic) between the
vertices i and j.
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Appendix
Baseline features description

Normalized CC

λ =
CC

CCrand
, (29)

where CCrand is the average CC from simulated random networks.
We randomize network by swapping edges between random pairs
of vertices (five swaps on average for each edge), thus preserving
each vertex degree, but changing connectivity pattern. One
hundred of such random networks is produced for each subject.
Normalized CPL

γ =
CPL

CPLrand
, (30)

where CPLrand is the average CPL from the same random networks.
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Appendix
Baseline features description

Small-worldness
σ =

λ

γ
. (31)

Modularity

Q =
1

2m

∑
ij

[Aij −
didj
2m

]δ(cicj), (32)

where m is the sum of weighted edges in the network, and c is the
community. Hence, Q values represent the proportion of
within-module edges in the network minus the expected
proportion from a similar random network. We follow the authors of
the original paper and produce one reference graph partition based
on the group average network with Louvain modularity algorithm
and compute modularity values with respect to this partition.
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Results
PCA and kernel PCA dimensionality reduction on weighted degrees

There is no clear structure in our data

PCA Kernel PCA (cosine kernel)
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Results
Isomap and TSNE dimensionality reduction on weighted degrees

Again, there is no clear structure in our data

Isomap TSNE
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Appendix
Autism ML results overview
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Appendix
Neuroimage ML accuracy
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