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Leci n-est novs une fufie .

an image of a pipe not an image of a pipe



LEARNING WITH QUERIES
(ANGLUIN 1988)

Input: an oracle capable of answering queries of
certain predefined types concerning a target property.

Build a classitier that determines whether a previously
unseen object has the target property.



TYPES OF QUERIES

Membership query: Does the object have the target
property?
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Membership query: Does the object have the target property?

Equivalence query: Does the hypothesis H accurately describe

the set of objects with the target property? If not, the oracle

must provide

d

that has the target property, but is

not covered by the hypothesis

or

d

but satisfies the hypothesis.

that doesn't have the property,
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Equivalence query: Does the hypothesis H accurately
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Are dogs animals with four legs and curly hair?
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* Equivalence query: Does the hypothesis H accurately
describe the set of objects with the target property?

Are dogs animals with four legs and curly hair?

Well, some of the are...
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TYPES OF QUERIES

Subset query: Does the hypothesis H describe
objects with the target property?

It not, provide a negative counterexample.



TYPES OF QUERIES

Subset query: Does the hypothesis H describe
objects with the target property?

It not, provide a negative counterexample.

Superset query: Does the hypothesis H describe
the objects with the target property?

It not, provide a positive counterexample.



WHAT CAN BE LEARNT WITH QUERIES?

Deterministic finite automata
Description logic theories
Restricted first-order Horn theories
Preterences

The structure of social networks



D GRAPHS

LOOPLESS DIRECT

VARIABLES
Strongly Connected Rooted
éWeakIy Connected Tournament Acyclicé
Disconnected Tra nsitiveé

We want to build the implication theory of loopless
directed graphs w.r.t. these seven variables.
't will include theorems such as

ACYCLIC TOURNAMENTS ARE TRANSITIVE.

STRONGLY CONNECTED GRAPHS ARE ROOTED.



HORN FORMULAS

is a disjunction of literals with at most one
unnegated variable.

is a conjunction of Horn clauses.

Example: (-cv-dva) A (-avec) A (-avd) A (-aV-bV-c)
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HORN FORMULAS

is a disjunction of literals with at most one
unnegated variable.

is a conjunction of Horn clauses.

Example: (-cv-dva) A (-avec) A (-avd) A (-aV-bV-c)

As a conjunction of implications:

(cAhd—a) AN (a—c) AN (a—d) AN (aAbAc— 1)
or.
{c,d} — {a} {a} = {c,d} {a,b,c} — L
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A set of implications over ® describes a set of —
assignments that satisty these implications.

We identify assignments with the sets of variables they set to 1.
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LEARNING IMPLICATIONS WITH
QUERIES

A set of implications over ® describes a set of —
assignments that satisty these implications.

We identify assignments with the sets of variables they set to 1.
Membership queries: Is A ¢ M a model of H*?

Equivalence queries: Is an implication set H equivalent to H*?

It not, the oracle must provide a counterexample: a model of
H* but not of H ( ), or vice versa

( ).



POLYNOMIAL-TIME ALGORITHM

(Angluin et al. 1992)

Computes the representation of the target Horn formula
with the smallest number of clauses.

Makes O(m2n) membership and O(mn) equivalence queries

m is the size of the number of clauses in the computed
formula

nis the number of variables



WHEN DO W
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-D QUERIES?

Little data, but we can talk to domain experts.
Too much data, but we can query it efficiently.

An abstract domain, but we have automatic

porocedures for theorem proving and counterexample
generation.



EQUIVALENCE QUERIES FOR LEARNING
IMPLICATIONS

Positive counterexamples are (relatively) easy.

Negative counterexamples are hard.



MEMBERSHIP QUERIES FOR LEARNING
MPLICATIONS

s C a model of H*?

Horn domain (closed under intersection):
Check it Cis a model.

Non-Horn domains:
Check if Cis an intersection of some models.

Angluin’s algorithm asks queries about the set of all models of
the implications of the domain,



HORN ENVELOPE

of formula ¢ is a set of implications that
includes only
and from which logically follow all
implications that logically follow from ¢.

His a Horn envelope of ¢ it and only if its models are the
intersections of the models of ¢.

We want to be able to generate Horn envelopes of arbitrary
formulas using “realistic” queries.



ATTRIBUTE EXPLORATION

Use queries of the form “Does A imply B?" (with
positive counterexamples).

Can take exponentially long.
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-NOUGH IS GOOD ENOUGH

CLOS

Let H* be a Horn envelope of ¢. Then H is an e-Horn
approximation of ¢ if

| Mod H A Mod H*|
< €
2| P| —

Mod H*| <« 2®

Let H* be a Horn envelope of ¢. Then H is an e-strong Horn
approximation of ¢ if

WV @ [HV)# H(V))

< g
2| ] —




OFTEN ENOUGH CLOSE ENOUGH 15
GOOD ENOUGH (PAC LEARNING)

For € and 0, use the implication oracle for ¢ to compute H such
that

Pr(H is an e-(strong) Horn approximation of ¢) > 1 — 9.



OFTEN ENOUGH CLOSE ENOUGH 15
GOOD ENOUGH

For € and 0, use the implication oracle for ¢ to compute H such
that

Pr(H is an e-(strong) Horn approximation of ¢) > 1 — 9.

In Angluin’s algorithm:

simulate membership queries w.r.t. the Horn envelope of ¢ by
implication queries w.r.t. ¢;

replace equivalence queries by sampling.



SIMULATING QUERIES

Use the implication oracle to implement the membership
oracle:

AC ®isamodel of H¥ «<— A — {al fornoac ®\ A

Use counterexamples provided by the oracle as additional
positive counterexamples.

Replace the exact equivalence oracle by the sampling oracle:
Consider randomly chosen sets X C &
f X € ModH A Mod H*, return X.

f after sufficiently many iterations no counterexample has
been found, declare H and H* “equivalent”.




HOW MANY IS SUFFICIENTLY MANY?

If in the ith call to the sampling equivalence oracle at least

()

randomly chosen sets X are considered, then, with probability at
least 1 — 0, the result will be an e-Horn approximation.




EXTENSIONS

MANY POSSIBI

Background knowledge First-order rule exploration

Exceptions Exploration for description

logics

Symmetries Learning from impertect

” oracles
Incompletely specified

examples Learning association rules

Collaborative exploration



-INALLY,
L LOOPLESS
DIRECTED GRAPHS

Rooted graphs are weakly connected.
Tournaments are rooted.

Transitive graphs are acyclic.
Disconnected graphs are transitive.
And so are acyclic tournaments.

No graph is both weakly connectead
and disconnected.

Strongly connected graphs are rooted.

Strongly connected acyclic graphs are
tournaments.
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Strongly connected acyclic graphs are
tournaments.




