
L E A R N I N G H O R N
F O R M U L A S W I T H Q U E R I E S

S E R G E I O B I E D K O V

S U P E R V I S E D L E A R N I N G

• Input: a training set divided into (for example) two classes w.r.t. a certain target
property.

• positive examples

• negative examples

• Build a classifier that determines whether a previously unseen object has the
target property.

S U P E R V I S E D L E A R N I N G

• Input: a training set divided into (for example) two classes w.r.t. a certain target
property.

• positive examples

• negative examples

• Build a classifier that determines whether a previously unseen object has the
target property.

an image of a pipe not an image of a pipe

L E A R N I N G W I T H Q U E R I E S
(A N G L U I N 1 9 8 8)

• Input: an oracle capable of answering queries of
certain predefined types concerning a target property.

• Build a classifier that determines whether a previously
unseen object has the target property.

T Y P E S O F Q U E R I E S

• Membership query: Does the object have the target
property?

T Y P E S O F Q U E R I E S

• Membership query: Does the object have the target
property?

Is this a dog?

Yes! No!

T Y P E S O F Q U E R I E S

• Membership query: Does the object have the target property?

• Equivalence query: Does the hypothesis H accurately describe
the set of objects with the target property? If not, the oracle
must provide

• a positive counterexample that has the target property, but is
not covered by the hypothesis

or

• a negative counterexample that doesn’t have the property,
but satisfies the hypothesis.

T Y P E S O F Q U E R I E S

• Membership query: Does the object have the target property?

• Equivalence query: Does the hypothesis H accurately describe
the set of objects with the target property? If not, the oracle
must provide

• a positive counterexample that has the target property, but is
not covered by the hypothesis

or

• a negative counterexample that doesn’t have the property,
but satisfies the hypothesis.

T Y P E S O F Q U E R I E S

• Membership query: Does the object have the target property?

• Equivalence query: Does the hypothesis H accurately describe
the set of objects with the target property? If not, the oracle
must provide

• a positive counterexample that has the target property, but is
not covered by the hypothesis

or

• a negative counterexample that doesn’t have the property,
but satisfies the hypothesis.

T Y P E S O F Q U E R I E S

• Equivalence query: Does the hypothesis H accurately
describe the set of objects with the target property?

Are dogs animals with four legs and curly hair?

T Y P E S O F Q U E R I E S

• Equivalence query: Does the hypothesis H accurately
describe the set of objects with the target property?

Are dogs animals with four legs and curly hair?

Well, some of the are…

T Y P E S O F Q U E R I E S

• Equivalence query: Does the hypothesis H accurately
describe the set of objects with the target property?

Are dogs animals with four legs and curly hair?

…but no!

positive counterexample

T Y P E S O F Q U E R I E S

• Equivalence query: Does the hypothesis H accurately
describe the set of objects with the target property?

Are dogs animals with four legs and curly hair?

…but no!

positive counterexample negative counterexample

T Y P E S O F Q U E R I E S

T Y P E S O F Q U E R I E S

• Subset query: Does the hypothesis H describe only
objects with the target property?

• If not, provide a negative counterexample.

• Superset query: Does the hypothesis H describe all
the objects with the target property?

• If not, provide a positive counterexample.

T Y P E S O F Q U E R I E S

• Subset query: Does the hypothesis H describe only
objects with the target property?

• If not, provide a negative counterexample.

• Superset query: Does the hypothesis H describe all
the objects with the target property?

• If not, provide a positive counterexample.

W H AT C A N B E L E A R N T W I T H Q U E R I E S ?

• Deterministic finite automata

• Description logic theories

• Restricted first-order Horn theories

• Preferences

• The structure of social networks

L O O P L E S S D I R E C T E D G R A P H S

VA R I A B L E S

Strongly Connected Rooted

Weakly Connected Tournament Acyclic

Disconnected Transitive

We want to build the implication theory of loopless
directed graphs w.r.t. these seven variables.
It will include theorems such as

A C Y C L I C T O U R N A M E N T S A R E T R A N S I T I V E .

S T R O N G LY C O N N E C T E D G R A P H S A R E R O O T E D .

H O R N F O R M U L A S

• Horn clause is a disjunction of literals with at most one
unnegated variable.

• Horn formula is a conjunction of Horn clauses.

• Example:

• As a conjunction of implications:

• or:

Формулы Хорна

Дизъюнкт Хорна
� дизъюнкция литер, из которых не более одной литеры
являются положительными.

Формула Хорна
� конъюнкция дизъюнктов Хорна.

Пример

(¬c _ ¬d _ a) ^ (¬a _ c) ^ (¬a _ d) ^ (¬a _ ¬b _ ¬c)

Формулу Хорна можно записать в виде конъюнкции
импликаций:

Пример

(c ^ d ! a) ^ (a ! c) ^ (a ! d) ^ (a ^ b ^ c ! ?)
или

{c , d} ! {a} {a} ! {c , d} {a, b, c} ! ?

H O R N F O R M U L A S

• Horn clause is a disjunction of literals with at most one
unnegated variable.

• Horn formula is a conjunction of Horn clauses.

• Example:

• As a conjunction of implications:

• or:

Формулы Хорна

Дизъюнкт Хорна
� дизъюнкция литер, из которых не более одной литеры
являются положительными.

Формула Хорна
� конъюнкция дизъюнктов Хорна.

Пример

(¬c _ ¬d _ a) ^ (¬a _ c) ^ (¬a _ d) ^ (¬a _ ¬b _ ¬c)

Формулу Хорна можно записать в виде конъюнкции
импликаций:

Пример

(c ^ d ! a) ^ (a ! c) ^ (a ! d) ^ (a ^ b ^ c ! ?)
или

{c , d} ! {a} {a} ! {c , d} {a, b, c} ! ?

Формулы Хорна

Дизъюнкт Хорна
� дизъюнкция литер, из которых не более одной литеры
являются положительными.

Формула Хорна
� конъюнкция дизъюнктов Хорна.

Пример

(¬c _ ¬d _ a) ^ (¬a _ c) ^ (¬a _ d) ^ (¬a _ ¬b _ ¬c)

Формулу Хорна можно записать в виде конъюнкции
импликаций:

Пример

(c ^ d ! a) ^ (a ! c) ^ (a ! d) ^ (a ^ b ^ c ! ?)

или
{c , d} ! {a} {a} ! {c , d} {a, b, c} ! ?

H O R N F O R M U L A S

• Horn clause is a disjunction of literals with at most one
unnegated variable.

• Horn formula is a conjunction of Horn clauses.

• Example:

• As a conjunction of implications:

• or:

Формулы Хорна

Дизъюнкт Хорна
� дизъюнкция литер, из которых не более одной литеры
являются положительными.

Формула Хорна
� конъюнкция дизъюнктов Хорна.

Пример

(¬c _ ¬d _ a) ^ (¬a _ c) ^ (¬a _ d) ^ (¬a _ ¬b _ ¬c)

Формулу Хорна можно записать в виде конъюнкции
импликаций:

Пример

(c ^ d ! a) ^ (a ! c) ^ (a ! d) ^ (a ^ b ^ c ! ?)
или

{c , d} ! {a} {a} ! {c , d} {a, b, c} ! ?

Формулы Хорна

Дизъюнкт Хорна
� дизъюнкция литер, из которых не более одной литеры
являются положительными.

Формула Хорна
� конъюнкция дизъюнктов Хорна.

Пример

(¬c _ ¬d _ a) ^ (¬a _ c) ^ (¬a _ d) ^ (¬a _ ¬b _ ¬c)

Формулу Хорна можно записать в виде конъюнкции
импликаций:

Пример

(c ^ d ! a) ^ (a ! c) ^ (a ! d) ^ (a ^ b ^ c ! ?)

или
{c , d} ! {a} {a} ! {c , d} {a, b, c} ! ?

Формулы Хорна

Дизъюнкт Хорна
� дизъюнкция литер, из которых не более одной литеры
являются положительными.

Формула Хорна
� конъюнкция дизъюнктов Хорна.

Пример

(¬c _ ¬d _ a) ^ (¬a _ c) ^ (¬a _ d) ^ (¬a _ ¬b _ ¬c)

Формулу Хорна можно записать в виде конъюнкции
импликаций:

Пример

(c ^ d ! a) ^ (a ! c) ^ (a ! d) ^ (a ^ b ^ c ! ?)

{c , d} ! {a} {a} ! {c , d} {a, b, c} ! ?

L E A R N I N G I M P L I C AT I O N S W I T H
Q U E R I E S

• A set of implications over Φ describes a set of models—
assignments that satisfy these implications.

• We identify assignments with the sets of variables they set to 1.

Membership queries: Is A ⊆ M a model of H*?

Equivalence queries: Is an implication set H equivalent to H*?

• If not, the oracle must provide a counterexample: a model of
H*, but not of H (positive counterexample), or vice versa
(negative counterexample).

L E A R N I N G I M P L I C AT I O N S W I T H
Q U E R I E S

• A set of implications over Φ describes a set of models—
assignments that satisfy these implications.

• We identify assignments with the sets of variables they set to 1.

Membership queries: Is A ⊆ M a model of H*?

Equivalence queries: Is an implication set H equivalent to H*?

• If not, the oracle must provide a counterexample: a model of
H*, but not of H (positive counterexample), or vice versa
(negative counterexample).

L E A R N I N G I M P L I C AT I O N S W I T H
Q U E R I E S

• A set of implications over Φ describes a set of models—
assignments that satisfy these implications.

• We identify assignments with the sets of variables they set to 1.

Membership queries: Is A ⊆ M a model of H*?

Equivalence queries: Is an implication set H equivalent to H*?

• If not, the oracle must provide a counterexample: a model of
H*, but not of H (positive counterexample), or vice versa
(negative counterexample).

P O LY N O M I A L - T I M E A L G O R I T H M

(Angluin et al. 1992)

• Computes the representation of the target Horn formula
with the smallest number of clauses.

• Makes O(m2n) membership and O(mn) equivalence queries

• m is the size of the number of clauses in the computed
formula

• n is the number of variables

W H E N D O W E N E E D Q U E R I E S ?

• Little data, but we can talk to domain experts.

• Too much data, but we can query it efficiently.

• An abstract domain, but we have automatic
procedures for theorem proving and counterexample
generation.

E Q U I VA L E N C E Q U E R I E S F O R L E A R N I N G
I M P L I C AT I O N S

• Positive counterexamples are (relatively) easy.

• Negative counterexamples are hard.

M E M B E R S H I P Q U E R I E S F O R L E A R N I N G
I M P L I C AT I O N S

Is C a model of H*?

• Horn domain (closed under intersection):

• Check if C is a model.

• Non-Horn domains:

• Check if C is an intersection of some models.

Angluin’s algorithm asks queries about the set of all models of
the implications of the domain, not about the domain itself.

H O R N E N V E L O P E

Horn envelope of formula ɸ is a set of implications that

• includes only

• and from which logically follow all

implications that logically follow from ɸ.

H is a Horn envelope of ɸ if and only if its models are the
intersections of the models of ɸ.

We want to be able to generate Horn envelopes of arbitrary
formulas using “realistic” queries.

AT T R I B U T E E X P L O R AT I O N

• Use queries of the form “Does A imply B?” (with
positive counterexamples).

• Can take exponentially long.

C L O S E E N O U G H I S G O O D E N O U G HClose Enough is Good Enough

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-Horn
approximation of � if

|ModH 4ModH⇤|
2|�|  "

Too easy to achieve if

|ModH⇤| ⌧ 2|�|

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-strong Horn
approximation of � if

|{V ✓ � | H(V) 6= Ĥ(V)}|
2|�|  "

C L O S E E N O U G H I S G O O D E N O U G HClose Enough is Good Enough

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-Horn
approximation of � if

|ModH 4ModH⇤|
2|�|  "

Too easy to achieve if

|ModH⇤| ⌧ 2|�|

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-strong Horn
approximation of � if

|{V ✓ � | H(V) 6= Ĥ(V)}|
2|�|  "

Close Enough is Good Enough

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-Horn
approximation of � if

|ModH 4ModH⇤|
2|�|  "

Too easy to achieve if

|ModH⇤| ⌧ 2|�|

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-strong Horn
approximation of � if

|{V ✓ � | H(V) 6= Ĥ(V)}|
2|�|  "

C L O S E E N O U G H I S G O O D E N O U G HClose Enough is Good Enough

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-Horn
approximation of � if

|ModH 4ModH⇤|
2|�|  "

Too easy to achieve if

|ModH⇤| ⌧ 2|�|

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-strong Horn
approximation of � if

|{V ✓ � | H(V) 6= Ĥ(V)}|
2|�|  "

Close Enough is Good Enough

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-Horn
approximation of � if

|ModH 4ModH⇤|
2|�|  "

Too easy to achieve if

|ModH⇤| ⌧ 2|�|

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-strong Horn
approximation of � if

|{V ✓ � | H(V) 6= Ĥ(V)}|
2|�|  "

Close Enough is Good Enough

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-Horn
approximation of � if

|ModH 4ModH⇤|
2|�|  "

Too easy to achieve if

|ModH⇤| ⌧ 2|�|

Definition
Let H⇤ be a Horn envelope of �. Then H is an "-strong Horn
approximation of � if

|{V ✓ � | H(V) 6= H⇤(V)}|
2|�|  "

O F T E N E N O U G H C L O S E E N O U G H I S
G O O D E N O U G H (PA C L E A R N I N G)

Often Enough Close Enough is Good Enough

Goal
For " and �, use the implication oracle for � to compute H such
that

Pr(H is an "-(strong) Horn approximation of �) � 1� �.

Solution
In the AFP algorithm:

I simulate membership queries w.r.t. the Horn envelope of � by
implication queries w.r.t. �;

I replace equivalence queries by sampling.

O F T E N E N O U G H C L O S E E N O U G H I S
G O O D E N O U G H

Often Enough Close Enough is Good Enough

Goal
For " and �, use the implication oracle for � to compute H such
that

Pr(H is an "-(strong) Horn approximation of �) � 1� �.

Solution
In the AFP algorithm:

I simulate membership queries w.r.t. the Horn envelope of � by
implication queries w.r.t. �;

I replace equivalence queries by sampling.

Often Enough Close Enough is Good Enough

Goal
For " and �, use the implication oracle for � to compute H such
that

Pr(H is an "-(strong) Horn approximation of �) � 1� �.

Solution
In Angluin’s algorithm:

I simulate membership queries w.r.t. the Horn envelope of � by
implication queries w.r.t. �;

I replace equivalence queries by sampling.

S I M U L AT I N G Q U E R I E SSimulating Queries

Membership queries

I Use the implication oracle to implement the membership
oracle:

A ✓ � is a model of H⇤ () A ! {a} for no a 2 � \ A
I Use counterexamples provided by the oracle as additional

positive counterexamples.

Equivalence queries

Replace the exact equivalence oracle by the sampling oracle:

I Consider randomly chosen sets X ✓ �

I If X 2 ModH4ModH⇤, return X .

I If after su�ciently many iterations no counterexample has
been found, declare H and H⇤ “equivalent”.

Simulating Queries

Membership queries

I Use the implication oracle to implement the membership
oracle:

A ✓ � is a model of H⇤ () A ! {a} for no a 2 � \ A
I Use counterexamples provided by the oracle as additional

positive counterexamples.

Equivalence queries

Replace the exact equivalence oracle by the sampling oracle:

I Consider randomly chosen sets X ✓ �

I If X 2 ModH4ModH⇤, return X .

I If after su�ciently many iterations no counterexample has
been found, declare H and H⇤ “equivalent”.

H O W M A N Y I S S U F F I C I E N T LY M A N Y ?

Theorem
If in the ith call to the sampling equivalence oracle at least

⇠
1

"
·
✓
i + log2

⇣1
�

⌘◆⇡

randomly chosen sets X are considered, then, with probability at
least 1� �, the result will be an "-Horn approximation.

M A N Y P O S S I B L E E X T E N S I O N S

• Background knowledge

• Exceptions

• Symmetries

• Incompletely specified
examples

• First-order rule exploration

• Exploration for description
logics

• Learning from imperfect
oracles

• Learning association rules

• Collaborative exploration

F I N A L LY,
L O O P L E S S
D I R E C T E D G R A P H S

• Rooted graphs are weakly connected.

• Tournaments are rooted.

• Transitive graphs are acyclic.

• Disconnected graphs are transitive.

• And so are acyclic tournaments.

• No graph is both weakly connected
and disconnected.

• Strongly connected graphs are rooted.

• Strongly connected acyclic graphs are
tournaments.

acyclic

weakly

connected

transitive rooted

disconnected

tournament

strongly

connected

1

F I N A L LY,
L O O P L E S S
D I R E C T E D G R A P H S

• Rooted graphs are weakly connected.

• Tournaments are rooted.

• Transitive graphs are acyclic.

• Disconnected graphs are transitive.

• And so are acyclic tournaments.

• No graph is both weakly connected
and disconnected.

• Strongly connected graphs are rooted.

• Strongly connected acyclic graphs are
tournaments.

