Deep Neural Networks: A
Bayesian Perspective

Dmitry P. Vetrov
Research professor at HSE,
Senior researcher at Yandex
Head of Bayesian methods research group
http://bayesgroup.ru

p(B/A)yesgroup.ru


http://bayesgroup.ru/

Outline

e Bayesian framework in brief

* Variational inference

* Dropout as Bayesian procedure
e Sparse Variational dropout
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Conditional and marginal
distributions

Just to remind...

e (Conditional distribution

Joint
Conditional = — " . plzly) = p(z,y)
Marginal p(y)

e Product rule: Any joint distribution can be expressed as a product of
one-dimensional conditional distributions

p(z,y, 2) = p(zly, 2)p(y|2)p(2) = p(z|z, y)p(=|y)p(Yy)

e Sum rule: Any marginal distribution can be obtained from the joint distribution
by intergrating out unnessesary variables

p(y) = / p(z, y)dis = / p(yl2)p(2)dz = Eop(yl)



Arbitrary conditioning

Assume we have a joint distribution over three groups of variables p(X,Y, Z)
We observe Z and are interested in predicting X

Values of Y are unknown and irrelevant for us

How to estimate p(X|Z) from p(X,Y, Z)?



Arbitrary conditioning

Assume we have a joint distribution over three groups of variables p(X,Y, Z)
We observe Z and are interested in predicting X

Values of Y are unknown and irrelevant for us

How to estimate p(X|Z) from p(X,Y, Z)?

p(X.2)  [p(X,Y,Z)dY
p(Z2)  [p(X,Y,2)dYdX

p(X|Z) =

Sum rule allows to build arbitrary conditional distributions at least in
theory



Bayes theorem

e Conditionals inversion (follows from product rule):

p(z,y) _ plylz)p(z)
p(y) p(y)

p(zly) =

e Bayes theorem (follows from conditionals inversion and sum rule):

plylz)p(z) _ plylr)p(z)
p(y) J p(ylz)p(z)dx

p(zly) =

e Bayes theorem defines the rule for uncertainty conversion when new information

arrives . . _
Likelihood X Prior

Evidence

Posterior =




Statistical inference

e Consider standard problem of statistical inference. Given i.i.d. data X =
(x1,...,%y,) from distribution p(x|@#) one needs to estimate 6

e Maximum likelihood estimation (MLE):

n

Orrr, = argmax p(X|0) = argmax | | p(x;]|0) = arg maxz log p(x;|0)
i=1 i=1

e Bayesian inference: encode uncertainty about # in terms of a distribution
p(0) and apply Bayesian inference

B H?:l p(x;]0)p(0)
PO = T, (| 0)pl6)d0




-requentist vs. Bayesian
frameworks

Frequentist Bayesian
Randomness Objective indefiniteness Subjective ignorance
Variables Random and Deterministic Everything is random
Inference Maximal likelihood Bayes theorem
Estimates ML-estimates Posterior or MAP-estimates
Applicability n>1 Vn




Bayesian machine learning

Suppose we're given training data (X,7T) and a probabilistic classifier
p(t|lz, W)

Define reasonable prior over the weights p(W)

Training stage:

p(T|X, W)p(W)
p(W|X,T) =
WD = T whpw)aw
Test stage:
p(t*lz*, X, T) = /p(t*|sc*,W)p(W|X, T)dW
Bayesian learning results in an ensemble of classifiers



Bayesian machine learning

Suppose we're given training data (X,7T) and a probabilistic classifier
p(tz, W)

Define resonable prior over the weights p(W)
Training stage:

(T X, W)p(W)
PIVIXT) S (T, whp(wW)aw )

Test stage: Usually intractable

p(t*|z*, X, T) :[fp(t*w*, Wip(W|X, T)dW]

Bayesian learning results in an ensemble of classifiers



Variational Bayes

Approximate posterior with a simpler distribution from a restricted parametric
family

p(WIX,T) = q(W|¢) = arg min KL(g(W|9)|lp(W|X,T))

It can be shown that

p(T| X, W)p(W)

vy W

argmin K L{g(W]0)| p(W|X, T)) = arg max ] {(W|9) log

The last expression is usually denoted as L(¢) and has special name
evidence lower bound (ELBO)



Properties of ELBO

ELBO

T'X
p(T1X W)p(W) o

£0) = [ a(W|o)log ;

has several nice properties

e We may compute its stochastic gradient by performing mini-batching
and removing integral with its MC estimate

e We do not overfit - the richer is parametric family the closer we are to the
true posterior

e We may rewrite ELBO as follows

() = / A(W|6) log p(T|X, W)dW — K L(q(W|6)|[p(W))

Matt Hoffman, David M. Blei, Chong Wang, John Paisley. Stochastic Variational Inference. JMLR 14, 2013.
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Properties of ELBO

ELBO

T'X
p(TIX W)p(W) o

£0) = [ a(W|o)log ;

has several nice properties

e We may compute its stochastic gradient by performing mini-batching
and removing integral with its MC estimate

e We do not overfit - the richer is parametric family the closer we are to the
true posterior

e We may rewrite ELBO as follows Regularizer

L(¢) U q(W|¢)log p(T'| X, W)d"a[ KL(Q(ch)p(W))]

Data term

e The second term prevents q(W|¢) from collapsing to maximum likelihood
point



New understanding of
regularization

Standard view of regularization:

We add a regularizer to log-likelihood and try to find the weights W':

logp(T| X, W) + logp(W) — max

This corresponds to MAP-estimate.

Bayesian view on regularization:

We are searching not for the W but for the q(W|¢) thus training ensemble
of networks

/ (W 16)1og p(TIX, W)dW — KL(a(W|6)[p()) - max

On each iteration of training we inject noise in our neural network



Dropout

e Purely heuristic regularization procedure

e Inject either Bernoulli Ber(£[p) or gaussian NV (£|1, ) noise to the weights
during training

e The magnitude of the noise p and « respectively are set manually

aee
=

— T o —2
Bl x 0

N f v (L)

input weights noise

Binary dropout Gaussian droput



Reverse engineering of dropout

e In 2015 Kingma, Salimans and Welling decided to understand the nature
of dropout

e They assumed that gaussian dropout corresponds to Bayesian procedure

that optimizes ELBO using SGD with q(W10,a) = N (W |0, ah?)

fN(W\H, af?)log p(T| X, W)dW — KLN (W0, a6?)|[p(W)) — max

e The first term corresponds to the criterion that is really optimized during
dropout training... BUT there is no K L-term!

Diederik P. Kingma, Tim Salimans, Max Welling. Variational Dropout and the Local Reparameterization Trick. arXiv:1506.02557
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Reverse engineering of dropout

In 2015 Kingma, Salimans and Welling decided to understand the nature
of dropout

They assumed that gaussian dropout corresponds to Baeysian procedure

that optimizes ELBO using SGD with ¢(W|0, ) = N (W |0, a6?)

/N(W|9, ad?) log p(T| X, W)dW — KLN (W10, a6?)||[p(W)) — max

The first term correposnds to the criterion that is really optimized during
dropout training... BUT there is no K L-term!

IDEA! What if K L-term does not depend on 67
If one could find such prior p(W) that
KLWN (W0, a6)|[p(W))

is independent from 6...

Diederik P. Kingma, Tim Salimans, Max Welling. Variational Dropout and the Local Reparameterization Trick._arXiv:1506.02557
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And... voilal

e They managed to find distribution p(W) such that K L-term does not
depend on 6

e It means that gaussian dropout really corresponds to reasonable Bayesian
procedure

e Surpizingly the distribution p(W) appeared to be very interpretable

known as log-uniform prior

e [t penalizes the precision (number of significant digits) with which we find

1%
p(W)




Variational dropout

Remember that in gaussian and binary dropouts the magnitude of the
noise is to be defined manually

With Bayesian interpretation of dropout we have better option

K L-term does not depend on 6 but still depends on «

L(0,a) = DataTerm(6, «) + K L(«) — max

Why not trying to optimize ELBO both w.r.t. § and «o?

L(0,«a) = DataTerm(d, ) + KL(a) — max



Approximation for KL-term

e K L-term cannot be computed in closed form

e However since this is 1-dimensional function of «;; we may approximate
it by analytic function

4
2
o O
|
-2 == |Ower bound, a <1 [Kingma et al.]
=== Approximation, o <1 [Kingma et al.]
wse Qur approximation
-4 ® True —-D,, by sampling

- - a=]

-10 =3 0 5 10



Sparse VDO

e Now we may extend the variational family even further and assign individual
dropout rates «;; per each weight

q(W10,a) = [ [NV (wis10i;, ci63))

,J

e It can be shown that if o;; — 400 then 6;; = O ( 1) i.e.

L)

lim  g(w;;|0i5, i) = d(0)

Qg4 — 400

e Incredebly efficient way for removing the redundancy of current deep
architectures

Up to 99.9% of the weights in the layer become irrelevant

Dmitry Molchanov, Arsenii Ashukha, Dmitry Vetrov. Variational Dropout Sparsifies Deep Neural Networks. ICML 2017.
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Additive noise reparameterization

e Using chain-rule we have

8(9?;5,- B 8wr,;j 8913

o Let g(wi;|0sj, aij) = N(wij|0i5, 2i07;). Then using reparameterization
trick yields
W;; = 9¢j(1 + Ozijs), e~ N(g|0,1)

=1+ Q€

e Huge variance when «;; > 1



Additive noise reparameterization

2

e Solution: new variable o7; = azz-jﬂ,?j

e Variational distribution takes the form q(w;;|0;;,0:;) = N (wij|6’ij,ai2j).
Then using reparameterization trick yields

wi; = 0;; + 0458, €~N(gl0,1)

8wij

00;;

e Now K L-term becomes dependant on 0;;

aKL(OZZJ) . 8KL(05@3) aaij o _QGKL(QZJ‘) 0-’1323'
893-3,- a aaij 89@';}' B 80{1’3‘ ggj

e The price to pay: we may no longer share a’s between the weights

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry Vetrov. Structured Bayesian Pruning via Log-Normal
Multiplicative Noise. arXiv:1705.07283
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Variance reduction

—m— SGVLEB: ¥ loga) parametrization ==  Sparsity: (0 loga) parametrization
—a— SGVLB: (4 log ") parametrization - = Sparsity: (#. logo®) parametrization




Visualization

Epoch: 0 Compression ratio: 1x Accuracy: 0.113
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LeNet-5: convolutional
layer
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Open Problems

To develop better variance reduction methods for stochastic variational
inference

To develop stochastic optimization procedures with faster convergence
rates that take into account the structure of optimization problem

To find efficient ways of Bayesian ensembling

To find more flexible variational families that are still memory-efficient to
keep 1M-dimensional distributions



Conclusions

* Bayesian framework is extremely powerful and extends ML tools

* We do have scalable algorithms for approximate Bayesian inference

* Bayes + Deep Learning = '

e Even the first attempts of neurobayesian inference give impressive
results

 Summer school on NeuroBayesian methods, August, 2018, Moscow,
http://deepbayes.ru

' Deep|Bayes
>
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