

GANs, GANs everywhere

particularly, in High Energy Physics

Maxim Borisyak

Yandex, NRU Higher School of Economics

Maxim Borisyak

Generative models

Given samples of a random variable X find X^\prime such as:

 $P_X\approx P_{X'}$

Approaches:

- > probability density function;
- > sampling procedure.

Generator vs probability function

- > Learning directly a probability density function ${\cal P}_{X^\prime}$ is hard:
 - > normalization is the main issue;
 - > sampling might be computationally costly (usually, long MC);
 - > $P_{X^{\prime}}$ is usually heavily restricted (e.g. RBM).
- > Learning a generator is easier:

$$X' = G(Z)$$

where:

- \rightarrow *G* a **parametrized** deterministic function;

Generator

Generator might be any program:

- > a neural network (traditionally);
- > a Monte-Carlo simulation.

Generative Adversarial

Adversarial training

Generator is trained to maximize goodness of produced samples.

GAN defines goodness of a generator via a classifier *D*:

- \rightarrow learns to discriminate X against X';
- if quality is close to a random guess:
 X' is similar to X;
- > if quality is high: G should be improved.

Discriminator

- > usually called **adversary** or **critic**;
- > traditionally, also a neural network;
- > discriminator defines goodness of generated samples:
 - > rich set of methods for classification;
 - easy to identify important properties of good generator and use inside discriminator;
 - > produces interpretable quality metric.

Generative Adversarial Networks

GANs

Generative Adversarial Networks:

- > introduced recently;
- > a lot of promising results and development;
- > adoptable:
 - > conditional GANs;
 - > GANs as auxiliary loss;

GANs in the wild

INPUT

OUTPUT

Source: https://affinelayer.com/pixsrv/

GANs in the wild

Generative Adversarial Networks:

- > generator training;
- > performance of trained classifier as quality measure;
- > easily adoptable for problems beyond pure generation.

GANs in HEP

GANs IN High Energy Physics

- > CaloGAN:
 - > fast simulation;
- > PartyGAN:
 - > learning (almost) black-box physical process;
- > MC tuning:
 - > selecting best parameters for simulation to match data.

CaloGAN

Samples EM calorimeter showers.

CaloGAN

- > direct sampling from the response space;
- > no intermediate steps involved;
- > significant speedup.

PartyGAN

Simulation of cosmic rays interaction with a CMOS sensor:

- > partially simulated by GEANT, without readout;
- > generator transforms GEANT output into realistic images:
 - generator is to learn readout-process;
- > matching to the real data.

PartyGAN

PartyGAN: toy readout model

Maxim Borisyak

PartyGAN: quality test

Trigger is training on D_1 , evaluated on D_2 .

21

MC tuning

A MC simulation as generator:

- > parameter tuning to match real data;
- > non-differentiable generator;
- > gradient-free optimization methods.

Summary

- > Generative Adversarial Networks is powerful tool for modeling distributions;
- > easily adoptable for various settings, even beyond pure generative tasks;
- > GANs in HEP:
 - > fast simulation: e.g. CaloGAN:
 - > possible applications: RICH-GAN, VeLo-GAN;
 - > learning behavior of an almost black-box system: e.g. PartyGAN;
 - > tuning Monte-Carlo parameters: Adversarial Optimization.

References, GAN

- Soodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
- > Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A., 2016. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004.

References, GAN in HEP

- > Paganini, M., de Oliveira, L. and Nachman, B., 2017. CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. arXiv preprint arXiv:1705.02355.
- > PartyGAN at ACAT-2017 https://indico.cern.ch/event/567550/contributions/2629720/
- > Louppe, G. and Cranmer, K., 2017. Adversarial Variational Optimization of Non-Differentiable Simulators. arXiv preprint arXiv:1707.07113.

PartyGAN details

- > GEANT output as generator's input;
- > real data as reference data;
- > event rate adjustment;
- Cycle-GAN to enforce reversibility of the generator;
- > restricted (3 \times 3) receptive field of the generator.

Party-GAN details

Different flavors of GANs, part I

- > GAN as auxiliary loss:
 - > restricts e.g. regression to realistic results;
- > Conditional GAN:
- > Cycle-GAN:
 - > a conditional GAN that learns reversible generator;
- > staked GANs, ensembles of GANs, ...

Different flavors of GANs, part II

- > Classical GAN:
 - > cross-entropy discriminator: proxy to KL distance;
 - > vanishing/exploding gradients.
- > EB-GAN:
 - > energy-based discriminator: proxy to total variation distance;
 - > rarely vanishing, smooth gradients;
- > Wasserstein-GAN:
 - > critic, a L_1 function: proxy for earth-moving distance;
 - > never vanishing, smooth gradients;
 - > difficulties training: keeping critic in L_1 .

PartyGAN

