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GANs, GANs everywhere

particularly, in High Energy Physics
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Generative models

Given samples of a random variable X find
X’ such as:

PX%PX/

Approaches:
> probability density function;

> sampling procedure.
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Generator vs probability function

> Learning directly a probability density function Py is hard:
> normalization is the main issue;
> sampling might be computationally costly (usually, long MC);
> Py is usually heavily restricted (e.g. RBM).

> Learning a generator is easier:

where:
> (G - a parametrized deterministic function;
> Z - predetermined and easy to sample.
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Generator

Generator might be any program:
> aneural network (traditionally);

> a Monte-Carlo simulation.

Maxim Borisyak

Project and reshape




Generative Adversarial



Adversarial training

Generator is trained to maximize goodness
of produced samples.

GAN defines goodness of a generator via
a classifier D:

> learns to discriminate X against X’;

» if quality is close to a random guess:
X is similar to X;

> if quality is high: G should be
improved.
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Discriminator

> usually called adversary or critic;
> traditionally, also a neural network;
> discriminator defines goodness of generated samples:

> rich set of methods for classification;

> easy to identify important properties of good generator and use inside
discriminator;

> produces interpretable quality metric.
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Generative Adversarial
Networks



GANSs

Generative Adversarial Networks:
> introduced recently;
> alot of promising results and development;
> adoptable:

> conditional GANSs;
> GANs as auxiliary loss;
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GANSs in the wild

INPUT

OUTPUT

PIX2pix

process

Source: https: / /affinelayer.com /pixsrv/




GANSs in the wild

User edits

Source: https:/ /github.com /junyanz /iGAN

Generated 1 images




Summary

Generative Adversarial Networks:
> generator training;
> performance of trained classifier as quality measure;
> easily adoptable for problems beyond pure generation.
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GANs IN High Energy Physics

> CaloGAN:
» fast simulation;

> PartyGAN:
> learning (almost) black-box physical process;

> MC tuning:
> selecting best parameters for simulation to match data.
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CaloGAN

Samples EM calorimeter showers.

Source: https:/ /github.com /hep-lbdl /CaloGAN



CaloGAN

> direct sampling from the response space;

> no intermediate steps involved,;

> significant speedup.
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Source: https:/ /github.com /hep-Ibdl /CaloGAN



PartyGAN

Simulation of cosmic rays interaction with
a CMOS sensor:

> partially simulated by GEANT, without
readout;

> generator transforms GEANT output
into realistic images:

> generator is to learn
readout-process;

> matching to the real data.

Maxim Borisyak

0

20 4% e B0 100

120

0010

0008

0006

0004

0002

0000



PartyGAN
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PartyGAN: toy readout model

GEANT toy tracks o generated
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PartyGAN: quality test

Trigger is training on D1, evaluated on D,

Party-GAN, trigger test Party-GAN, trigger test
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MC tuning

A MC simulation as generator:
> parameter tuning to match real data;
> non-differentiable generator;
> gradient-free optimization methods.
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Summary

> Generative Adversarial Networks is powerful tool for modeling distributions;
> easily adoptable for various settings, even beyond pure generative tasks;
> GANs in HEP:
> fast simulation: e.g. CaloGAN:
> possible applications: RICH-GAN, VelLo-GAN;

> learning behavior of an almost black-box system: e.g. PartyGAN;
> tuning Monte-Carlo parameters: Adversarial Optimization.
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PartyGAN details

> GEANT output as generator's input;
» real data as reference data;
> event rate adjustment;

> Cycle-GAN to enforce reversibility of
the generator;

> restricted (3 X 3) receptive field of the
generator.
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Party-GAN details
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Different flavors of GANs, part |

> GAN as auxiliary loss:
> restricts e.g. regression to realistic results;

> Conditional GAN:
> replaces Z ~ N"(0, 1) by another dataset;

> Cycle-GAN:
> a conditional GAN that learns reversible generator;

> staked GANs, ensembles of GANs, ...

Maxim Borisyak

30



Different flavors of GANs, part Il

> Classical GAN:
» cross-entropy discriminator: proxy to KL distance;
> vanishing/exploding gradients.
> EB-GAN:
> energy-based discriminator: proxy to total variation distance;
> rarely vanishing, smooth gradients;
> Wasserstein-GAN:

> critic, a L function: proxy for earth-moving distance;
> never vanishing, smooth gradients;
» difficulties training: keeping critic in L.
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PartyGAN
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