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Generative



Generative models

Given samples of a random variable 𝑋 find
𝑋′ such as:

𝑃𝑋 ≈ 𝑃𝑋′

Approaches:

› probability density function;

› sampling procedure.

Maxim Borisyak 3



Generator vs probability function
› Learning directly a probability density function 𝑃𝑋′ is hard:

› normalization is the main issue;
› sampling might be computationally costly (usually, long MC);
› 𝑃𝑋′ is usually heavily restricted (e.g. RBM).

› Learning a generator is easier:

𝑋′ = 𝐺(𝑍)
where:

› 𝐺 - a parametrized deterministic function;
› 𝑍 - predetermined and easy to sample.
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Generator

Generator might be any program:

› a neural network (traditionally);

› a Monte-Carlo simulation.
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Generative Adversarial



Adversarial training
Generator is trained to maximize goodness
of produced samples.

GAN defines goodness of a generator via
a classifier 𝐷:

› learns to discriminate 𝑋 against 𝑋′;

› if quality is close to a random guess:
𝑋′ is similar to 𝑋;

› if quality is high: 𝐺 should be
improved.
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Discriminator

› usually called adversary or critic;

› traditionally, also a neural network;

› discriminator defines goodness of generated samples:
› rich set of methods for classification;
› easy to identify important properties of good generator and use inside

discriminator;
› produces interpretable quality metric.
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Generative Adversarial
Networks



GANs

Generative Adversarial Networks:

› introduced recently;

› a lot of promising results and development;

› adoptable:
› conditional GANs;
› GANs as auxiliary loss;
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GANs in the wild

Source: https://affinelayer.com/pixsrv/ 11



GANs in the wild

Source: https://github.com/junyanz/iGAN 12



Summary

Generative Adversarial Networks:

› generator training;

› performance of trained classifier as quality measure;

› easily adoptable for problems beyond pure generation.
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GANs in HEP



GANs IN High Energy Physics

› CaloGAN:
› fast simulation;

› PartyGAN:
› learning (almost) black-box physical process;

› MC tuning:
› selecting best parameters for simulation to match data.
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CaloGAN
Samples EM calorimeter showers.

Source: https://github.com/hep-lbdl/CaloGAN 16



CaloGAN
› direct sampling from the response space;
› no intermediate steps involved;
› significant speedup.

Source: https://github.com/hep-lbdl/CaloGAN 17



PartyGAN

Simulation of cosmic rays interaction with
a CMOS sensor:

› partially simulated by GEANT, without
readout;

› generator transforms GEANT output
into realistic images:

› generator is to learn
readout-process;

› matching to the real data.
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PartyGAN



PartyGAN: toy readout model
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PartyGAN: quality test
Trigger is training on 𝐷1, evaluated on 𝐷2.
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MC tuning

A MC simulation as generator:

› parameter tuning to match real data;

› non-differentiable generator;

› gradient-free optimization methods.

Maxim Borisyak 22



Summary



Summary

› Generative Adversarial Networks is powerful tool for modeling distributions;

› easily adoptable for various settings, even beyond pure generative tasks;

› GANs in HEP:
› fast simulation: e.g. CaloGAN:

› possible applications: RICH-GAN, VeLo-GAN;
› learning behavior of an almost black-box system: e.g. PartyGAN;
› tuning Monte-Carlo parameters: Adversarial Optimization.
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PartyGAN details

› GEANT output as generator's input;

› real data as reference data;

› event rate adjustment;

› Cycle-GAN to enforce reversibility of
the generator;

› restricted (3 × 3) receptive field of the
generator.
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Party-GAN details
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Different flavors of GANs, part I

› GAN as auxiliary loss:
› restricts e.g. regression to realistic results;

› Conditional GAN:
› replaces 𝑍 ∼ 𝒩𝑚(0, 1) by another dataset;

› Cycle-GAN:
› a conditional GAN that learns reversible generator;

› staked GANs, ensembles of GANs, …

Maxim Borisyak 30



Different flavors of GANs, part II

› Classical GAN:
› cross-entropy discriminator: proxy to KL distance;
› vanishing/exploding gradients.

› EB-GAN:
› energy-based discriminator: proxy to total variation distance;
› rarely vanishing, smooth gradients;

› Wasserstein-GAN:
› critic, a 𝐿1 function: proxy for earth-moving distance;
› never vanishing, smooth gradients;
› difficulties training: keeping critic in 𝐿1.
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PartyGAN
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