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SHiP experiment

Many theoretical ideas which predict dark matter, and which can be
tested experimentally.

SHIP is designed to fir
iINnteracting particles o

d a solution for new physics by searching for very weakly

“the low mass.



SHiP experiment
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SHIP shield



SHIP shield

> Theexperiment needs to minimize backgrounds from all known
particles.

> Critical part is the deflection of muons by a magnetic shield.



SHIP shield

> Theshield contains 8 magnets and each magnet parametrized by / values.

> It cost about 4000 $ per ton.

> We needto find a cheap and efficient solution which minimize
backgrounds.




Evaluation of the shield

> For given configuration we can make MC simulations.
> 17.8M muons pass thought the shield.

> Forevery muon we can compute the following value

where ' IS the coordinate of

0, = \/1 — (2, + 300)/560 the muon with respect to the
center of the scoring plate




O u

> o, represents the effectiveness of the magnet to the given muon.

> Weare trying to put all the muons to the right part of the scoring plate.

oy as a function of x,
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L oss function

> We need to formalize the notion of a good configuration in some function.

> Let design loss function which reflects our views about best solution.
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L oss function

We can measure performance of the shield by X value, which is
computed over all muons u.

Z:ZUM
L

We design loss function that depends on the X, weight W and some
fixed We|ght Wbl'

L=(1+X)(1+exp(10(W — W)/ W)

Our goal is to minimize L.
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Baseline configuration



Baseline

> We had a baseline which was
derived manually.

> Theweightis about 1900 tons .:: g

and X isequal to 32

> But we would like to find

cheaper and more efficient
solution.
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Qur approach: Bayesian
Optimization



Optimization cycle

> Build a surrogate model over |oss function.

> Choose next point according to surrogate model via probabilistic
methods.

> Compute next point.
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Surrogate modeling

Surrogate models

> (aussian Processes
> Random Forest

> Gradient Boosting

Gaussian Process
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EXxpected improvement

> New points suggested by
Expected Improvement algorithm.

> Find point which maximize
E(y" — f)™.

> (Can deal with exploration and
exploitation.

> Works with a big class of non-
differentiable functions.
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Optimization results



Difficulties

> High dimensional space
> Computation of the X is time consuming

> Computation of the X is noisy
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Initial setup

> Toincrease the speed of computation we made simulations only
with ‘bad” muons.

> Discard many low-momentum muons. Finally we left only 485K
mMuons.

> Forcomputations we have used a large distributed system, as
task is well-parallelized.




Optimization run

> Optimization started from light
rectangular configuration.

> Points was computed in
batches.

> After 5000 points we stated a
result.
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Results

2 distribution for best point: all muons
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> Anew solutionis lighter by 25
percent.
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> It hasasimilar performance in
terms of X value.
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> tis significantly cheaper! .
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Conclusion

> Bayesian Optimization works and solution was found.

> We can optimize a lot of non-differentiable tasks, e.g. physical
experiments.
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