

Machine Learning for Neutral Particles Identification in the LHCb Calorimeter

Viktoria Chekalina 💽 Fedor Ratnikov

NRU Higher School of Economics,

Oct 2, 2017

Content

- LHCb ECAL and neutral particles identification
- Separation high energy photons from merged photons from π^0 decay as a ML problem
- Classifiers optimisation
- Comparing with baseline

LHCb Detector @LHC

One of four big LHC detectors

Int. J. Mod. Phys. A 30 (2015) 1530022

- Primary physics program: charm and beauty physics
 - need excellent particle ID

Particle Identification

Charged particles

- 🔷 π, e, μ, K, p
 - see poster "Machine Learning based global particle identification algorithms at LHCb experiment" after this session
- Neutral particles
 - $\diamond \pi^0, \gamma, K^0, n$

- \diamond Radiative decays (γ) are very important for physics studies
- $\diamond \pi^0$ are massively produced in *pp* collisions at LHC
 - ♦ immediately decay: $\pi^0 \rightarrow \gamma \gamma$
 - \diamond photons are merging for high momentum π^0
 - huge background to photons from radiative decays
 - powerful separation is necessary

LHCb ECAL

- Shashlik technology
- \diamond 1×1, 2×2, 3×3 module granularities
 - pre-shower layer matching ECAL granularity

π^0 - γ Separation

Separated photon: stand alone cluster

 π^0 - γ Separation

ML Photon Separation in LHCb 7 / 18

π^0 - γ Separation

$\diamond \pi^0$: merged clusters fake stand alone photons

Separation Features

$\diamond \pi^0$ - γ features

♦ merged photons from π^0 : elongated cluster

ont straightforward at coarse granularity

 γ - merged π^0 Separation in LHCb 10 / 22

5500

6000

B mass (MeV)

All candidates

MLP response > 0.6

5000

Train

. . .

♦ $B^0 \rightarrow K^{*0}\gamma$ vs mixture of $B^0 \rightarrow \pi^0 X$ decay modes

 $\kappa = \sqrt{1 - 4 \frac{S_{XX} S_{YY} - S_{XY}^2}{(S_{XX} + S_{YY})^2}} \qquad \text{asym} = \frac{S_{XY}}{\sqrt{S_{XX} S_{YY}}}$

 $\frac{E_{\text{seed}}}{E_{\text{cl}}} \qquad \frac{(E_{\text{seed}} + E_{2nd})}{E_{\text{cl}}}$

 $r2 = \langle r^2 \rangle = S_{XX} + S_{YY}$

- Learn behaviours using NN (2-layers MLP)
- Aggregate cluster constituents into "shape" and "asymmetry" features

12000

10000 8000

6000

4000

2000

Plain Approach

- Consider responses in 5×5 cells cluster around Rec/Calo/EcalClusters
 - for both ECAL and pre-shower detectors
- Build classifier on these 2×25 input features
 - i.e. from first principles
- Train
 - \diamond use kinematically similar π^0 and γ MC samples
 - $\diamond \quad \mathsf{B} \to K \pi \gamma$
 - $\diamond \quad \mathsf{B} \to K \pi \pi^0$
 - Consider potentially misleading candidates
 - \diamond E_T > 2 GeV
 - photons from π^0 are not more than 2 ECAL cells apart
 - > 8 TeV MC data, 120K photons, 220K π^0

Profit!

ML Technology

Neural Networks vs BDT

- try both approaches
- optimise hyper-parameters of ML models
 - use inner area as a reference
- pick the best approach
- Out of the box
 - 1-layer NN, 80/50 ECAL/Preshower units: ROC AUC =0.86
 - ♦ XGBoost: ROC AUC =0.95

NN Optimisation

NN Optimisation

 γ - merged π^0 Separation in LHCb 14 / 22

NN Optimisation

Select minimizer

- Adagrad(loss rate 0.05) win
- Final ROC AUC = 0.87

BDT

- <u>https://github.com/yandexdataschool/modelgym/</u>
- Scores are about the same
 - continue using XGBoost

All Regions Together

R

 γ - merged π^0 Separation in LHCb 17 / 22

All Regions Together

- Significant improvement of the quality
 - not that fantastic at higher efficiencies
 - though factor of 4 at moderate efficiencies

Samples Kinematics

Momentum Dependencies

 γ - merged π^0 Separation in LHCb 20 / 22

E_T Dependencies

Overall Performance

Significant suppression of π^0 contribution is feasible for those analyses using photons

Conclusions

- We developed a new procedure to separate photons from merged π⁰, based on first principles: direct use of energies deposited in calorimeter cells
- Diligent optimisation of both NN and BDT approaches was performed
- BDT shows better performance on this problem
- Promising possibility of aggressive background suppression is demonstrated on simulated data
- Performance tests on real data will follow

Backup

Kinematic Extension

Fedor.Ratnikov@cern.ch

 γ - merged π^0 Separation in LHCb 25 / 22

Train Samples Kinematics

