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Event Sequence
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Event Characterisation
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〉Identify charged particle 
associated with a track  

〉Use information, collected by 
subdetectors:  

〉trackers; 

〉Cherenkov detectors; 

〉calorimeters; 

〉muon chamber. 



Problem
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〉particle types: electron, muon, pion, kaon, proton. 

〉extra type: ghost track (reconstruction error). 

〉Aim: efficiently combine information from 
subdetectors. 

〉Sample: fully simulated events are used for training 
(12 Million events)



Total Model Quality
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〉In analyses, we are mostly interested in 
selecting one type (e.g., muon). 

〉We use one-vs-rest ROC curves and area 
under the curves (AUC) to measure quality 
of the classification.



Baseline Model

〉Simple neural network with one hidden layer 

〉Consists of 6 binary classification models: one 
versus rest 
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Multiclass classification for Neural Networks
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3 hidden layers 
~100 neurons each

Electron
Muon

Kaon
…etc

Muon 
RICH 
CALO 

〉The number of weights (parameters) in Neural Network is similar for binary 
classification and multiclass classification

〉Computationally multiclass classification has (almost) the same complexity as binary 
classification (unless there are hundreds of classes and more)



Neural Networks: Special Structure
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〉Linear combination of features for a 
subdetector seems to be informative.

〉Initial layers combine information 
separately for each subdetector. 

〉These initial layers are optimized 
simultaneously with the rest of network.



Neural Networks: Stacking
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〉Linear combination of features for a 
subdetector seems to be informative.

〉Separately train NN on each 
subdetector features.

〉Later use this NNs as additional 
features for another NN (stacking 
approach)



Gradient Boosting on Decision Trees

The winning solutions were obtained using 
XGBoost and CatBoost. 

Add linear combinations of initial features 
which can help in trees construction (NNs can 
reconstruct those itself)

11



Best-efficiency Models: ROC AUCs (one-vs-rest)
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The higher the better; 1 means ideal separation.

Baseline

LHCb soft

LHCb soft

〉 BDT has similar quality to DL



Improving PID with flat models
〉The whole PID information strongly depends on particle momentum, that 
leads to strong dependency between PID efficiency and momentum.

〉In some analyses we need to have flat PID along signal particle 
momentum to avoid additional systematics.

13Ideal world Real world

LHCb simulation, work in progress



Flat Model vs Baseline
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〉There is a strong dependency 
on momentum for conventional 
models 
(see baseline efficiencies on the 
plot)

〉Uniform boosting approach 
suppresses this dependency. 



Flat Models: ROC AUC
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〉 Flatness is a very strong restriction, holding this restriction leads to 
quality decreasing.

〉Still, flat model is not worse than baseline in ROC AUCs



Conclusion

〉Application of modern machine learning solutions brings significant 
improvements into the workflow of LHCb experiments. 

〉Advanced techniques may allow to tackle the source of systematics 
uncertainties with only a small deterioration in quality.

〉Next steps will be a global optimisation of charged particle identification 
based on the deep subdetector feature combination. 
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