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Abstract. There are many different methods for computing relevant
patterns in sequential data and interpreting the results. In this paper,
we compute emerging patterns (EP) in demographic sequences using
sequence-based pattern structures, along with different algorithmic so-
lutions. The purpose of this method is to meet the following domain
requirement: the obtained patterns must be (closed) frequent contiguous
prefixes of the input sequences. This is required in order for demogra-
phers to fully understand and interpret the results.
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1 Introduction and related work

Demographic sequences are composed of vital facts that occur during the lifetime
of a person, such as date of birth and first year of school. The analysis of these se-
quences is a popular and promising study direction in demography [1,2]. Among
different results that can be obained by the analysis of demographic sequences,
in this paper we focus on the computation of events that are relevant for char-
acterising differences across generations. For example, would like to explore the
main differences between consecutive generations are, in terms of demographic
behaviour: number of children, age of marriage, incidence of divorce, etc.

Demographers and sociologists do not currently have a simple, unified method-
ology for the computation and interpretation of such event patterns, so different
techniques are used: sequence analysis [3,4,5] and statistical methods [6,7,8,9,10].
Demographers have also started to show great interest in machine-learning and
pattern-mining techniques [11] and other sophisticated sequence-analysis tech-
niques [12]. Although many different methods have been developed, the method-
ology used in this field is not fully convergent with state-of-the-art sequence-
mining techniques.
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In the previous paper [13], we used the SPMF (Sequential Pattern Mining
Framework) [14] for mining frequent sequences and finding relevant emerging
patterns. However, this approach has a drawback: the results it yields are hard
to interpret. Our work with demographers made us realize that it would be
useful to find contiguous, prefix-based patterns, since they are interested in the
full starting parts of people’s life trajectories without gaps.

The main goal of this paper is to find emerging patterns that allow us to the
discern demographic behaviour of different groups of people, with one important
restriction, which is necessary to ensure the interpretability of our results: the
obtained patterns must be (closed) frequent contiguous prefixes of the input
sequences.

The paper is organised in a following way. We briefly determine the scope
of this paper in Section 2. In Section 3, we describe our demographic dataset.
Section 4 introduces basic definitions and prefix-based contiguous subsequences,
in terms of pattern structures, combined with emerging patterns. Experimental
results are reported in two subsections of Section 5. Finally, in Section 6 we
provide the main concusions of this paper.

2 Problem Statement

In general terms, in this paper we compute a set of patterns that can characterise
one group of subjects (a generation, a geographically defined group of people, a
gender) with respect to other groups. As an example, we would like to be able
to answer questions about the relevant differences between men and women or
between generations in terms of demographic behaviour or questions about the
emerging patterns that distinguish two consecutive generations.

We want to answer all these questions, inter alia, by mining emerging con-
tiguous patterns.

However, it is important to note that we need to compute patterns that can
be interpreted by field experts. This is the reason why classification methods like
SVM and artificial neural networks must be discarded.

3 Materials

The dataset for the study is obtained from the Research and Educational Group
for Fertility, Family Formation and Dissolution at the Higher School of Eco-
nomics4. We use the three wave panel of the Russian part of the Generations
and Gender Survey (GGS), which took place in 2004, 2007 and 20115. The
dataset contains records of 4,857 respondents (1,545 men and 3,312 women).
The datset gender imbalance is caused by the panel nature of the data: survey

4 http://www.hse.ru/en/demo/family/
5 This part of GGS “Parents and Children, Men and Women in Family and in Society”

is an all-Russian representative panel sample survey: http://www.ggp-i.org/

http://www.hse.ru/en/demo/family/
http://www.ggp-i.org/
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respondents’ attrition is an uncontrollable process. That is why the representa-
tive waves combine to form a panel with a structure dissimilar to that of the
general sample.

In the database, the following information is indicated for each person: date
of birth, gender (male, female), generation, type of education (general, higher,
professional), locality (city, town, village), religion (yes, no), frequency of reli-
gious event attendance (once a week, several times a week, minimum once a
month, several times in a year or never). In addition, the database provides the
dates of significant events in their lives, such as first job experience, comple-
tion of highest level education, leaving the parental home, first partnership, first
marriage and birth of the first child. There are eleven generations: the first is of
those born in 1930-1934, the last is of those born in 1980-1984.

4 Sequence mining and emerging patterns

4.1 Pattern structures in a demographic context

A prefix-based contiguous subsequence (or simply prefix ) of a sequence s =
〈s1, . . . , sk〉 of length k′ ≤ k is the sequence s1 = 〈s′1, . . . , s′k′〉, where si = s′i for
all i ≤ k′. The relative support, rsupT (s), of a prefix s in a set of sequences T is
the number of sequences in T that start with s divided by |T |.

For example, for sequence 〈{education}, {work}, {marriage}〉, the subse-
quence 〈{education}, {marriage}〉 is not a prefix-based contiguous subsequence.
But 〈{education}〉, 〈{education}, {work}〉 and 〈{education}, {work}, {marriage}〉
are in fact prefix-based contiguous subsequences.

Pattern structures were introduced in [15] to analyse complex data with ob-
ject descriptions given in non-object-attribute-value form, for example, chemical
graphs, syntactic trees, vectors of numeric intervals and sequences. The usage
of pattern structures for sequence mining has already been successfully demon-
strated in [16].

Let (S, (D,u), δ) be a pattern structure related to our demographic problem,
where S is a set of sequences, D is a set of possible descriptions of patterns with
an associated intersection operator u and operator δ(s) returns the description
of sequence s from D. For example, if we have two sequences s1, s2 ∈ S, then

δ(s1) = 〈e11, e12, . . . , e1n〉 and δ(s2) = 〈e21, e22, . . . , e2m〉.

In our case, eji is an event which happened in a person’s lifetime.
Given two descriptions d1, d2 ∈ D, the intersection operator u returns their

maximal common prefix. To generate the maximal common prefix for a sequences
subset, we use the Galois operator denoted by � that results in the itersection
of the descriptions of the input sequences. For example, for s1, s2 such that
δ(s1) = 〈e11, e12, . . . , e1n〉 and δ(s2) = 〈e21, e22, . . . , e2m〉,

{s1, s2}� = δ(s1) u δ(s2) = 〈e1, e2, . . . , ek〉

where k is maximal such that ei = e1i = e2i for all i ≤ k ≤ min{n,m}.
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The operation � applied to description d = 〈e1, e2, . . . , ek〉 in our case is

d� = {s ∈ S | d v δ(s)},

where d v δ(s) means that d is a prefix of sequence s (d v δ(s) if duδ(s) = d
). In other words, the operator � applied to a description d returns the subset of
objects in S that ha d as a prefix.

A pair (A, d) is a pattern concept of a pattern structure (S, (D,u), δ) with

A� = d and d� = A, where A ⊆ S, and d ∈ D.

A is called the extent of the pattern concept (A, d) and d is its intent. For
every pattern concept (A, d) of a pattern structure (S, (D,u), δ), it follows that
A�� = A and d�� = d. One may check that (·)�� is a closure operator (idempo-
tent, monotone, extensive) on 2S w.r.t. ⊆, so A is closed.

Let us discuss the representation of pattern concepts in the related prefix-tree
(see section 4.5) for the original pattern structure and how they can be found. As
an example, consider the set of sequences S, given by δ(s1) = 〈a, b, c〉, δ(s2) =
〈a, b, c〉 and δ(s3) = 〈a, b, d〉. The corresponding prefix tree is

∅

a(3)

b(3)

c(2) d(1)

We can extract the following pattern concepts relevant to this example:
({s1, s2, s3}, 〈a, b〉), ({s1, s2}, 〈a, b, c〉), and ({s3}, 〈a, b, d〉). Any path of the as-
sociated prefix-tree, from its root to a bottom node, whose support is higher
than the support of its descendants corresponds to the concept of an original
pattern structure.

4.2 Hypotheses in pattern structures

Let us formulate a classification problem in a demographic setting. For each
object (individual), there is also a target attribute (e.g. gender, for binary clas-
sification) according to which we want to classify that individual. Our pattern
structure is then split into two pattern structures, positive K⊕ = (S⊕, (D,u), δ)
and negative K	 = (S	, (D,u), δ), according to the target attribute which de-
termines the class where it belongs to. Also, we have a set of undetermined
sequences Sτ with unknown target attribute value.

Now, when the associated Galois operator is denoted as A⊕ for the positive
pattern context and correspondingly for the negative one.

Let us define positive and negative hypotheses. A pattern intent of the pattern
structure K⊕ (K	) H v D is a positive (negative) hypothesis if H is not a subset
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of the pattern intent of any negative (positive) examples s ∈ S	 (s ∈ S⊕):

∀s ∈ S	(s ∈ S⊕) : H 6v s	(H 6v s⊕).

Eventually, the hypothesis is the pattern intent of a pattern concept, which
is found only in the objects of just one class.

4.3 Emerging patterns in pattern structures

Also, we introduce the notion of emerging prefix-based contiguous subsequences
in terms of pattern structures. Emerging pattern is specific for one class, but not
specific for its counterpart.

This feature is implemented via the ratio of the pattern supports for different
classes. This ratio is called growth rate. The growth rate of a pattern p ∈ D on
positive and negative pattern structures of K⊕ and K	 is defined as

GR(p,K⊕,K	) =
rsupK⊕(p)

rsupK	(p)

Patterns are selected by specifying a minimum growth rate as in [17]. That
means, we set the minimum growth ratio, for which we want to select patterns:

GR(p,K⊕,K	) ≥ θ

Let us consider an example. Assume that we have two sets of sequnces.
Men’s sequences:
〈{education}, {work}, {marriage}〉
〈{education}, {work}, {marriage}〉
〈{education}, {marriage}, {work}〉

Women’s sequences:
〈{education}, {marriage}, {work}〉
〈{marriage}, {education}, {work}〉
〈{marriage}, {education}, {work}〉
So we can make a prefix-tree which based on these data.

∅

education(1/3, 3/3)

work(0/3, 2/3)

marriage(0/3, 2/3)

marriage(1/3, 1/3)

work(1/3, 1/3)

marriage(2/3, 0/3)

education(2/3, 0/3)

work(2/3, 0/3)
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On each node of the tree we store rsup for different classes of current prefix-
based contiguous subsequences. By using this structure we can compute growth
rate.

4.4 Usage of emerging patterns for classification

For each class we compute its score as suggested in [18]. Let s be a new sequence
which we want to classify, then its score in positive class is equal to

score⊕(s) =

∑
p∈Dθ

⊕,pvδ(s)
GR(p,K⊕,K	)

median(GR(S⊕))

where Dθ
⊕ is a subset of D that consists of all p with GR(p,K⊕,K	) ≥ θ.

Then we choose all prefixes for the new sequence from set Dθ
⊕, and we sum all

these growth-rates and get the score. Then we normalize the score by the median
of the growth-rate for the current (positive) class.

4.5 Prefix-tree building: pseudocode and complexity

As we need to find contiguous prefix subsequences, it is a good idea to use a
prefix-tree [19]. Usually, every node in a prefix-tree is associated with a certain
string, but in our tree structure each node is associated with only one symbol
(in case there are no simultaneous events).

Prefix-tree building. Let us start with the prefix-tree building procedure. As
an input we have the set of sequences and their labels. At first we create the root
node, which should be empty. Then we iterate through all the sequences and try
to go the full path from the root to the end of a sequence. If we encounter a new
path, we create a new node (and all the remaining events in the current sequence
should be added as new subsequent nodes). Along the way, we increment all the
counters associated with traversed nodes, one for each class.

Time complexity. Let n be the size of the training set and m be the number of
different events in it. In line 4, we go through all the data; it takes n times. Then,
in line 6, we go through all the elements in a sequence. The maximum length of
a sequence is m. This pass takes O(m) steps. Then in Find procedure we iterate
through all the children of a node. The maximum number of children nodes is
m − 1; this step takes m − 1. Thus, the total time complexity is O(n ·m2). In
our case, m is a small value (7-10 events) and can be considered a constant. The
time complexity is O(n).

Space complexity. The space complexity is equal to the number of nodes in a
tree. The worst case is when all n sequences are different, i.e. all n sequences do
not have the same prefix. In this case, space complexity will be O(n ·m).
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Algorithm 1 Sequence tree building

1: procedure SequencesTree(S,L)
2: T ← {∅} // Initial prefix tree

3: cn← ∅
4: for s ∈ S do
5: l← label(s)
6: for e ∈ s do
7: c← Find(e, cn.children)
8: if c 6= ∅ then
9: c.counter[l] ← c.counter[l] + 1

10: cn← c
11: else
12: cn.children.append(newC)
13: newC.element ← e
14: newC.counter[l] ← 1
15: cn← newC

1: function Find(e,N)
2: for n ∈ N do
3: if n.element = e then return n

return None

Algorithm 2 Classify Sequence

1: function ClassifySequence(T, s, l, Classes,minSup,minGR)
2: sfc← [0, 0]
3: cn← T .root
4: for e ∈ s do
5: for c ∈ cn.children do
6: if c.element = e then
7: for l ∈ Classes do
8: if (c.support[l] > minSup) and (c.GR[label] > minGR) then
9: sfc[l]← sfc[l] + n.GR[l]

10: cn← c
return argMax(sfc)

1: procedure PrecomputeGrowthRate(T , Classes, soc)
2: soc←size(Classes) // soc is the number of classes
3: for n ∈ T do // iterate over the tree nodes
4: for l ∈ Classes do // iterate over the labels of classes
5: n.support[l] ← n.counter[l]/soc[l]

6: for n ∈ T do
7: for l ∈ C do // GR is a growth-rate attribute
8: n.GR[l]← n.support[l]/n.support[counterpartL]
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Classification by patterns. After performing the SequencesTree procedure
on input data, we have the prefix-tree with absolute support value for each
node and label. Then we can classify a new portion of sequences from the same
domain. At first, we perform preprocessing via the PrecomputeGrowthRate
procedure. In this procedure, we compute relative support and growth rates for
each node. After that, we use the ClassifySequence function to predict the
label of a new sequence.

Time complexity. Let k be the length of a sequence for classification. In Pre-
computeGrowthRate, we need to iterate through the tree’s nodes two times
for each class label. We consider the situation with only two different classes:
O(n ·m · 2) = O(n ·m).

In ClassifySequence, we iterate through the elements of the sequence and
node children of nodes for each label: O(k ·m · 2) = O(k ·m).

5 Experiments and results

To perform experiments with pattern-based classification, we use Python and
the Contiguous Sequences Analysis library implemented by the first author 6.

5.1 Classification by gender

After discussing with demographers, we have set the minimal relative support at
0.09. We have received the following prefix-based contiguous patterns that meet
a minimum of 9% of all respondents 1, 2.

Table 1. Women’s patterns

Pattern Support

〈{work}〉 0.287

〈{work}, {education}〉 0.120

〈{separation}〉 0.283

〈{education}〉 0.239

〈{education}, {work}〉 0.168

〈{separation}, {education}〉 0.110

〈{separation}, {education}, {work}〉 0.097

6 https://github.com/DanilGizdatullin/ContiguousSequencesAnalysis

https://github.com/DanilGizdatullin/ContiguousSequencesAnalysis
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Table 2. Men’s patterns

Pattern Support

〈{work}〉 0.329

〈{work}, {education}〉 0.155

〈{separation}〉 0.266

〈{education}〉 0.276

〈{education}, {work}〉 0.103

〈{separation}, {education}〉 0.199

〈{separation}, {education}, {work}〉 0.099

After thoughtful inspection, we can conclude that the beginning of human
life trajectories do not depend strongly on gender; moreover, the beginnings of
the most popular paths are the same for both sexes. We have split all our data
into two groups: a training set and a test set with the percentage of 66.5%-33.5%.

We have selected the same minimum support threshold for both classes,
0.004; this means that the pattern must be found in life trajectories of at least
five men and nine women. Then we made a classification with different minimum
threshold values for growth rates {1.5, 2, 5, 7} for men and {1.5, 2, 5, 7,∞} for
women.

The graphs below show the results and skyline in TPR-FPR (true positive
rate, false positive rate), TPR-NCPR (true positive rate, non-classified positive
rate), NCPR-FPR (non-classified positive rate, false positive rate) on the axes
(Fig. 1 and 2).

Fig. 1. TPR-FPR plot, along with two Pareto-optimal results from the skyline in the
oval.

We have chosen the same value for both minimum support classes at 0.004.
This means that the pattern must occur for at least five men and nine women.
We have performed several classifications with different minimum values of the
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Fig. 2. TPR-NCPR (left) and NCPR-FPR (right) plots, along with their skylines in
the ovals.

growth rate from {1.2, 1.5, 2, 3, 5, 7,∞}. In a demographic setting, it is important
to identify interesting discriminative patterns, though we do not try to solve the
problem of classification by gender. Thus, many objects from the test set have
not been assigned to any class. For example, in the experiment with the best
TPR-FPR metric, we cover over 1% of people in the test sample. We can conclude
from the obtained results that the interesting discriminative patterns for some
class relative to another have a small cover. Moreover, we can conclude that the
average behaviour of men and women has no stark differences in general, but
there are local groups of both classes that behave sufficiently differently.

The best quality of classification has been reached with the minimum value
of the growth rate (7,∞). It corresponds to the following emerging patterns 3,4.

Table 3. Women’s patterns in the test set

Pattern Growth Support
rate

〈{work, separation}, {marriage}, {children}, {education}〉 ∞ 0.006

〈{separation, partner}, {marriage}〉 ∞ 0.005

〈{separation, partner}, {marriage}〉 ∞ 0.005

〈{work, separation}, {marriage}, {children}〉 ∞ 0.008

〈{work, separation}, {marriage}〉 ∞ 0.009
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Table 4. Men’s patterns in the test set

Pattern Growth rsup
rate

〈{education}, {marriage}, {work}, {children}, {separation}〉 10.6 0.006

〈{education}, {marriage}, {work}, {children}〉 12.7 0.007

〈{education}, {work}, {partner}, {marriage}, {separation}, {children}〉 10.6 0.006

The presented results for women show that they prefer to start their adult
lives with separation. Only in one case did separation coincide with having a
partner. In other cases, we have an image of an independent woman, who got a
job and left her parents. The second step in all the cases is marriage. Here we
see how an independent (from parents and financially) woman creates her own
family and bears a child. The longest sequence contains the event “finishing an
education of the highest level”. Only after fulfilling four important socioeconomic
and sociodemographic events does the typical woman finish her education.

The first event in the sequences indicative for men is education. Unlike
women, who obtain their education only after fulfilling almost all events, men are
getting their education earlier. This can show not only the priority of education
for men and women, but also the difference in the level of the highest step of the
finished education: the lower the level, the lower the age of obtaining education.

The second event in the three sequences specifying men is marriage (two
cases) or work (one case). Like a woman, a man tends to create his family quite
early; unlike a woman, who is already very independent at this step, a man has
only his education. A man whose second event is “marriage” obtains his first
job next and then becomes a father. In the longest sequence, a man leaves the
parental home as the final step in the transition to adulthood.

Men who have “work” as the second event demonstrate different events in
their sequences: they have the first partner, then they get married, leave the
parental home and – only after all other events – become parents.

5.2 Classification by generation

In this experiment we search for emerging patterns for different generations of
the same sex. The first class 0 features people who were born between 1924 and
1959. The second class 1 contains people who were born between 1960 and 1984.

First, let us find emerging patterns for women from different generations. We
have 940 women from class 0 and 1,364 women from class 1. We need to tune two
parameters: the first is the minimal support and the second is minimal growth
rate.

Let us tune the minimal support parameter (Table 5).
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Table 5. Tuning of minimal support for women

minsup accuracy TPR FPR NCR
non-classification rate

0.001 0.682 0.707 0.331 0.255

0.004 0.683 0.703 0.316 0.333

0.01 0.668 0.710 0.332 0.399

0.025 0.660 0.648 0.298 0.540

0.04 0.660 0.616 0.278 0.606

0.05 0.652 0.646 0.312 0.641

0.1 0.651 1.0 1.0 0.884

As we can see, the minimal support can sufficiently change only the non-
classification rate and slightly affect accuracy, the TPR and the FPR.

We have chosen 0.004 as the minimal support and tuned minimal growth
rate.

Table 6. Tuning of minimal growth rate for women

minGrowthRate accuracy TPR FPR NCR

1.5 0.683 0.655 0.297 0.102

2 0.692 0.703 0.316 0.333

3 0.766 0.747 0.217 0.684

5 0.751 0.821 0.347 0.848

7 0.777 0.848 0.333 0.891

We have decided to choose a minGrowthRate of 2, since it covers 0.66 percent
of the test data and provides good results in terms of accuracy, the TPR and
the FPR.

Since we have had many emerging patterns in the data, we consider only
patterns with the greatest growth rate and support.

Table 7. Patterns for women of older generations

Pattern Growth rate Support

〈{work}, {separation}〉 1.85 0.38

〈{work}, {marriage, separation}〉 3.92 0.08
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Table 8. Patterns for women of younger generations

Pattern Growth rate Support

〈{education}〉 1.84 0.26

〈{education}, {work}〉 3.92 0.08

As we can see from Tables 7-8, the main differences in the behaviour of
women from different generations lie in the tendency to obtain education and
the tendency to work, and only after that separate from their parents in older
generations.

Let us find emerging patterns for men from different generations. Again we
should tune the minimal support:

Table 9. Tuning of minimal support for men

minsup accuracy TPR FPR NCR

0.001 0.701 0.667 0.266 0.271

0.004 0.704 0.667 0.262 0.338

0.01 0.723 0.671 0.232 0.442

0.025 0.719 0.651 0.218 0.590

0.04 0.706 0.536 0.165 0.712

0.05 0.718 0.627 0.208 0.764

0.08 0.710 0.0 0.0 0.944

Again, minimal support can sufficiently change only the non-classification
rate.

We have chosen 0.01 as the minimal support and tuned minimal growth rate.

Table 10. Tuning of the minimal growth rate for men

minGrowthRate accuracy TPR FPR NCR

1.2 0.638 0.510 0.242 0.050

1.5 0.670 0.591 0.260 0.171

2 0.723 0.671 0.232 0.442

3 0.754 0.627 0.144 0.664

5 0.744 0.625 0.152 0.845

7 0.836 0.808 0.138 0.901

The patterns with the biggest growth rate and support are reported in Ta-
bles 11,12.
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Table 11. Patterns for men of older generations

Pattern Growth rate Support

〈{work}, {marriage, separation}, {education}〉 13.52 0.025

〈{work}, {marriage}, {separation}〉 22.87 0.042

〈{work}, {marriage}, {separation}, {education}〉 ∞ 0.0208

Table 12. Patterns for men of younger generations

Pattern Growth rate Support

〈{education}, {work}, {separation}, {marriage}, {children}〉 10.58 0.020

〈{education}, {work}, {separation, partner}, {marriage}〉 8.65 0.016

〈{education}, {marriage, separation}〉 7.69 0.015

As in the previous experiment with the women subsample, the main differ-
ence lies in the tendency to obtain education; thus, men of younger generation
demonstrates this tendency.

6 Conclusion

The main result of our work is the application of various pattern-mining ap-
proaches, including pattern structures, to the analysis of demographic sequences.
The following conclusions can be drawn from the first results of this work:

1. In this paper, the application of sequence-based patterns for problems of
demographic trajectories has been studied.

2. A new method based on pattern structures for the analysis of special pat-
tern type required by demographers (prefix-based and contiguous) has been
proposed and implemented.

3. Behavior patterns for different classes of respondents were obtained and
interpreted for the most recent and clean demographic material available
for Russia.

4. Classifications based on pattern structures and emerging patterns have been
designed and tested.

According to the demographers involved in the project, the work is very
important for the further development of the pattern-mining application for
demographic analysis of sequence data. Thus, among the next planned steps are
the following:

– using similarity [20] and kernel-based approaches [21] for demographic-sequence
mining;
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– (sub)sequence clustering, in particular, based on pattern structures;
– pattern-mining and rule-based approaches for next-event prediction [13] com-

petitive with black-box approaches like recurrent neural networks;
– comprehensive trajectory visualisation within cohorts [22];
– analysing sequences of statuses like 〈{studying, single}, {working, single}〉;
– analysis of matrimonial and reproductive biographies, migration studies, etc.
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20. Egho, E., Räıssi, C., Calders, T., Jay, N., Napoli, A.: On measuring similarity for
sequences of itemsets. Data Min. Knowl. Discov. 29(3) (2015) 732–764

21. Elzinga, C.H., Wang, H.: Versatile string kernels. Theoretical Computer Science
495 (2013) 50 – 65

22. Jensen, A.B., Moseley, P.L., Oprea, T.I., Ellesøe, S.G., Eriksson, R., Schmock, H.,
Jensen, P.B., Jensen, L.J., Brunak, S.: Temporal disease trajectories condensed
from population-wide registry data covering 6.2 million patients. Nature Commu-
nications 5 (06 2014) 4022 EP –


	Classification of Demographic Sequences
	Introduction and related work
	Problem Statement
	Materials
	Sequence mining and emerging patterns
	Pattern structures in a demographic context
	Hypotheses in pattern structures
	Emerging patterns in pattern structures
	Usage of emerging patterns for classification
	Prefix-tree building: pseudocode and complexity
	Prefix-tree building.
	Classification by patterns.


	Experiments and results
	Classification by gender
	Classification by generation

	Conclusion


