

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS (Kharkevich Institute)

Classifying phenotypes based on the community structure of human brain networks

Anvar Kurmukov, Marina Ananyeva, Yulia Dodonova, Boris Gutman, Joshua Faskowitz, Neda Jahanshad, Paul Thompson, and Leonid Zhukov

Brain network

Brain regions become nodes

Neural connections between regions become edges

Graph G = (V, E, l, w), where

- *V* is the set of nodes
- *E* is the set of edges
- *l* is node's labeling mapping
- w is edge's weighting mapping

is called a brain network or a **connectome**

Connectomes: properties

- connectomes are relatively **small** graphs, usually with at most few hundreds of nodes
- the graphs are **simple** (no loops), **undirected**, i.e. the adjacency matrices are symmetric
- edges are weighted
- graphs are **connected**
- each node is **uniquely labeled** (according to the brain region), and the **set of labels is the same** across connectomes

Thus, graphs are fully described by their adjacency matrices (A)

Classification task

Dataset = {
$$(G_1, y_1), (G_2, y_2), \dots, (G_n, y_n)$$
}

 G_i is simple, weighted, undirected graph with unique labels on nodes

 y_i is a class label {Type I, Type II}, e.g: {disease, control}, {male, female},

etc.

Kernel approach

Connectomes

Kernel matrix $K: G \times G \rightarrow \mathbb{R}$ (n samples by n samples)

SVM with precomputed Kernel matrix

Kernel approach

Kernel approach

MICCAI 2017 GRAIL

Classifying phenotypes based on the community structure of human brain networks

Clustering based kernels

Overlapping communities

Idea: what if instead of non-overlapping partitions we will try overlapping ones?

Instead of belonging vector(P_2), we now have a **belonging matrix** (H_2), columns stands for vertices, and rows stands for clusters.

Overlapping communities

Idea: what if instead of non-overlapping partitions we will try overlapping ones?

Instead of belonging vector(P_2), we now have a **belonging matrix** (H₂), columns stands for vertices, and rows stands for e clusters.

> Nodes *c*, *d*, *e*, belong to one cluster (*c* to I and *d*, *e* to II)

Overlapping communities

Idea: what if instead of non-overlapping partitions we will try overlapping ones?

Instead of belonging vector(P₂), we now have a **belonging matrix** (H₂), columns stands for vertices, and rows stands for clusters.

> Nodes *c, d, e,* belong to one cluster (*c* to I and *d, e* to II)

Similarity of graph clusterings

AMI $(P_1, P_1) = 1.0$ AMI $(P_1, P_2) = 1.0$ AMI $(P_1, P_3) = 0.529$ AMI $(P_1, P_4) = 0.049$ Mutual Information is a measure of similarity, thus value 1 indicates completely identical partitions, and values close to 0 stands for very dissimilar. Which is also true for both AMI and NMI

Partition 1 : [0 0 0 0 0 1 1 1 1 1 2 2 2 2 2] Partition 2 : [1 1 1 1 1 2 2 2 2 2 0 0 0 0 0]

Partition 3 : [0 0 0 0 0 0 1 1 1 1 1 1 2 2 2] Partition 4 : [0 0 0 3 3 0 2 0 3 1 2 0 1 1 1]

Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning Research, pp. 2837–2854 (2010) In order to compare non-overlapping partitions we used so-called Adjusted Mutual Information

 $\omega_{AMI}(G_i, G_j) = 1 - AMI(P_i, P_j)$

All **soft** overlappings were thresholded down to **hard** overlappings

Normalized Mutual Information were used to compare hard overlappings

 $\omega_{NMI}(G_i, G_j) = 1 - NMI(\overline{H_i}, \overline{H_j})$

where overlined H's are hard overlappings, produced from soft ones

$$K(G_i, G_j) = e^{-\alpha \omega(G_i, G_j)}$$

MICCAI 2017 GRAIL

Soft and Hard overlapping

Soft and Hard overlapping

Soft and Hard overlapping

Graph clustering methods

Louvain Modularity

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." *Journal of statistical mechanics: theory and experiment* 2008.10 (2008): P10008.

Non-negative Matrix Factorization (NMF) $\min ||A - WH||_F^2$

W, H > 0

 $A \in \mathbb{R}^{n \times n}_+, W \in \mathbb{R}^{n \times k}_+, H \in \mathbb{R}^{k \times n}_+$

H is interpreted as a **belonging matrix**.

Produce overlapping community structure (belonging matrix)

Kuang, Da, Chris Ding, and Haesun Park. "Symmetric nonnegative matrix factorization for graph clustering." *Proceedings of the 2012 SIAM international conference on data mining.* Society for Industrial and Applied Mathematics, 2012.

MICCAI 2017 GRAIL

Summary

Data description

We use the Alzheimer's Disease Neuroimaging Initiative (ADNI2) database which comprises a total of 228 individuals (756 scans). Each individual has at least 1 brain scan and at most 6 scans.

The data include 47 people with **AD** (136 AD scans), 40 individuals with **LMCI** (147 LMCI scans), 80 individuals with **EMCI** (283 EMCI scans), and 61 **healthy (NC)** participants (190 scans).

Thus we consider four classification tasks:

- AD vs NC
- AD vs LMCI
- LMCI vs EMCI
- EMCI vs NC

All ROC AUCs were obtained on 10-fold subject based cross validation and averaged over 50 different randomizations. Model parameters (number of NMF components, SVM penalty, and kernel parameter) were tuned on another 50 different randomization

Classification results. NMF.

MICCAI 2017 GRAIL

Classifying phenotypes based on the community structure of human brain networks

Classification results. Overview.

Classifying phenotypes based on the community structure of human brain networks

Conclusion

Does community structure of human brain networks provide enough information to classify phenotypes?

We proposed a framework to **compare** both overlapping and non-overlapping community structures of brain networks within the machine learning settings

We demonstrated the performance of the proposed pipeline in a task of **classifying Alzheimer's disease**, mild cognitive impairment, and healthy participants

Models that made full use of **overlapping community structures** performed slightly better than those based on non-overlapping community structures

Thank you for your attention!

Classifying phenotypes based on the community structure of human brain networks

Anvar Kurmukov kurmukovai@gmail.com

Unauthorized figures

Fig. 2. Six overlapping communities: an example of a single network (healthy subject) with the nodes shown in their original 3D coordinates (axial view); color intensity is proportional to the strength of belonging to the respective community

Classifying phenotypes based on the community structure of human brain networks

Unauthorized figures

Fig. 3. Comparison of the non-overlapping (left) and overlapping (right) community structures obtained for the same example graph as in Fig. 3; node size is proportional to its degree (the number of edges coming from the respective node). Right plot is produced by selecting a single community for each node based on the maximal membership probability.