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Introduction

● With rapid aging of human population brain diseases become 
an increasingly important problem

● Magnetic resonance imaging is a powerful, non-invasive 
technique that can be used for understanding progression of 
these diseases

● One possible way to understand how these diseases affect brain 
structure is to study macroscale brain graphs called 
connectomes

● It is expected that brain pathology primarily affects modular 
structure of brain graphs and changes the way how 
communicating brain regions join into communities
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Goal
Develop a model for discriminating normal versus pathological 
phenotypes based on modular community structure of brain graphs. 

Approaches
● Develop an algorithm for evaluating similarity of brain graphs 

based on similarity in the community structure of brain regions
● Develop a classification pipeline that uses the obtained measure of 

graph similarity and for each new incoming graph returns a label of 
its unknown phenotype

● Validate the proposed pipeline in different classification tasks based 
on real-life datasets
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What is a connectome?

At a macroscale, connectome is a graph which nodes correspond to different brain regions, 
and edges are connections between these regions. We consider only structural connectomes

 (edges - neural pathways from one region to another)

5



Connectome: properties

● connectomes are relatively small graphs,    
usually with at most few hundreds of nodes

● the graphs are undirected, i.e. the adjacency
 matrices are symmetric

● edges are weighted

● graphs are connected

● each node is uniquely labeled (according to the 
brain region), and the set of labels is the same 
across connectomes 

● nodes are positioned in 3D space
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Graph partitioning

● Approximate
1. Newman eigenvector
2. Louvain
3. Greedy modularity optimization

● Very fast
● Suboptimal

1. M.E.J. Newman, 2006
2. Vincent D Blondel et al., 2008
3. Clauset A. et al, 2004
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All algorithms optimize modularity Q 
which is given by the formula:



Similarity of graph partitions

For each graph, we obtain its best 
partition P which is a vector of length n, 
where n is the number of nodes. 
i-th value in P represents community 
label of an i-th node. 

Given a set of graphs X = {G1, … GM}, we obtain partitions {P1, … PM}. 
Now we will compare graphs based on similarity in their partitions into communities.

graph 
distance

distance 
between 
partitions
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Similarity between partitions

● Adjusted Rand Index

● Adjusted Mutual Information

ARI and AMI are indifferent to cluster relabeling

ARI (P1, P1) = 1.0
ARI (P1, P2) = 1.0
ARI (P1, P3) = 0.479
ARI (P1, P4) = 0.042

AMI (P1, P1) = 1.0
AMI (P1, P2) = 1.0
AMI (P1, P3) = 0.529
AMI (P1, P4) = 0.049

Both ARI and AMI take the value 1 
when two partitions are identical and 
values close to 0 for random labeling  

Take (1-ARI) and (1-AMI) to obtain distances 

91. W. M. Rand, 1971     2.     Vinh N. X., et al., 2010



How to classify graphs?

Kernel classifiers
Define a positive semi-definite function (kernel) on graphs and feed the resulting 
Gram matrix to the SVM (support vector machines)
If we introduce a distance d(Gi ,Gj ) between the two graphs, a kernel can be 
produced by:

Сompute distance between 
two connectomes as a 
distance between their 

partitions
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1-AMI (Pi, Pj)
 or 

1-ARI (Pi, Pj)



Classification pipeline

Step 1
obtain 

best partition 
for each graph

Step 2a
compute pairwise 
distances between 

partitions

Produce baseline classification quality:

Step 2b
compute pairwise L1 (Manhattan) and L2 (Euclidean) 

distances between graph adjacency matrices 

Step 3
produce a kernel by 

exponentiating distances 
and run kernel SVM
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Step 0
Choose 

clustering 
algorithm



Data description

UCLA Autism

UCLA APOE

ADNI

DTI-based connectivity matrices of 51 (ASD) high-functioning autism 
spectrum disorder subjects and 43 (TD)  typically developing subjects. Total 
of 94 graphs with 264 nodes each. 

Carriers versus non-carriers of the APOE-4 allele associated with the higher 
risk of Alzheimer's disease, total of 55 graphs. 30 APOE-4 non carriers and 
25 APOE-4 carriers, with 110 nodes each.

Alzheimer‘s Disease Neuroimaging Initiative (ADNI2) database which 
comprises a total of 228 individuals (756 scans). The data include 47 people 
with AD (136 AD scans), 40 individuals with LMCI (147 LMCI scans), 80 
individuals with EMCI (283 EMCI scans), and 61 healthy participants (190 
scans), with 68 nodes each.
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Comparison results
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Task / 
Kernel Autism vs Normal APOE-4 vs APOE-3 Alzheimer’s vs Normal

Edge type binarized weighted binarized weighted binarized weighted

Louvian .60 / .57 .59 / .52 .57 / .57 .69 / .58 .80 / .83 .73 / .73

Newman .43 / .45 .56 / .58 .53 / .56 .70 / .63 .76 / .76 .66 / .68 

Greedy 
optimization .63 / .61 .50 / .49 .53 / .67 .59 / .56 .72 / .72 .69 / .72

Euclidean 
distance .54 .64 .47 .52 .80 .72 

Manhattan 
distance .48 .48 .45 .58 .54 .49 

Table 1. Comparison results for all tasks (UCLA Autism dataset, UCLA APOE dataset, ADNI2 dataset). First 
value for partition based kernels is ARI based kernel, second is AMI based kernel. Best kernels for each 

classification task are bolded. Perfomance is measured in terms of area under ROC
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Comparison results

Figure 1. From left to right: Louvain, Newman, Greedy optimization. All partitions obtained 
for a single graph from UCLA APOE data set 

Louvain Newman Greedy optimization

Louvain 1 0.57 0.66

Newman 0.57 1 0.60

Greedy optimization 0.66 .60 1

Table 2. Comparison of partitions in terms Adjusted Rand Index

● Different in terms of partitioning 

● Very simular in terms of modularity score

● Using soft partitioning instead of strict 
ones might improve the situation



Conclusions

● We proposed a pipeline for classifying normal and pathological 
phenotypes based on the community structure of brain graphs

● We proposed to evaluate distance between brain graphs based on 
whether or not brain regions in these graphs similarly cluster into 
communities 

● We developed a classification model that uses information about 
these distances in deciding whether a newly incoming graph 
represents normal or diseased brain

● Based on real-life datasets on both neurodegenerative and 
psychiatric disorders, we demonstrated that the proposed model 
outperforms the baselines thus supporting the idea that brain 
pathology crucially affects the entire structure of brain networks 
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