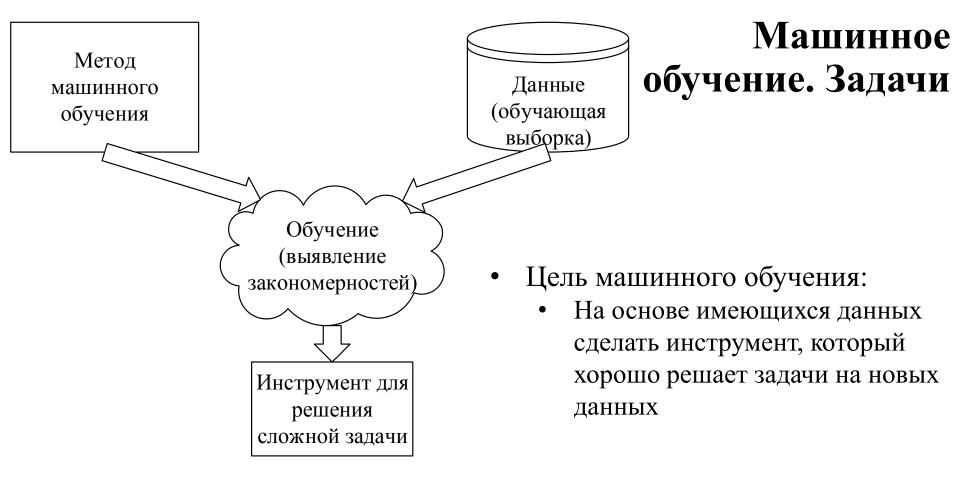
Методы машинного обучения в задачах анализа текстов

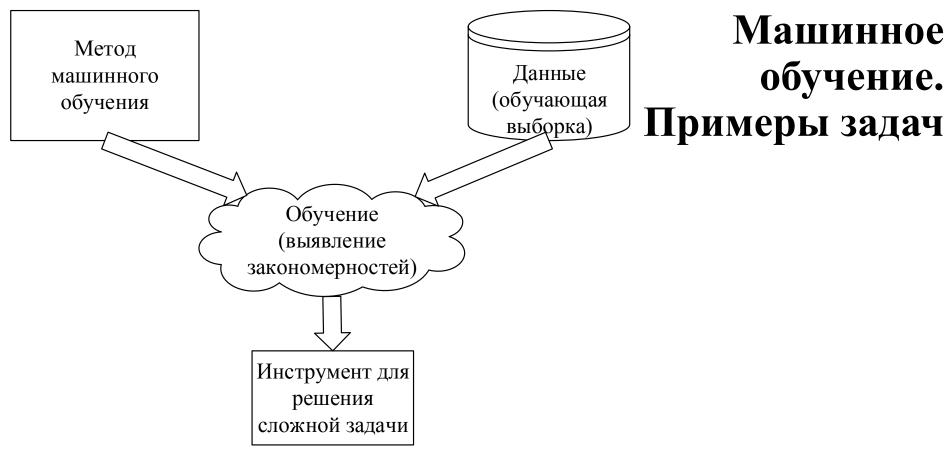
Артем Шелманов, к.т.н. ИСА ФИЦ ИУ РАН

План лекции

- Введение в машинное обучение
- Задача извлечения именованных сущностей (NER)
- Признаки: векторные представления слов (word embeddings)
- Нейронные сети, глубокое обучение, рекуррентные нейронные сети на основе LSTM
- Условные случайные поля (conditional random fields, CRF)
- Модель CRF + LSTM
- Модель CRF + biLSTM + char_embeddings
- Tensorflow
- Live demo (Jupyter)



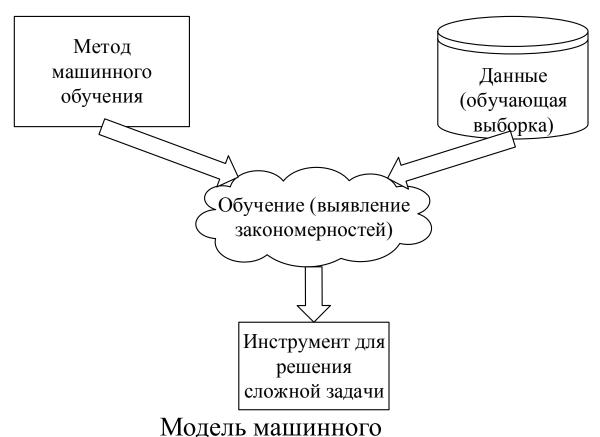
- Машинное обучение нужно, когда:
 - Трудно придумать алгоритм, который решает задачу напрямую
 - Много скрытых закономерностей в данных
 - Закономерности нечеткие (могу проявляться, а могут и нет)



• Примеры:

- Задача кредитного скоринга в банке: по данным клиента нужно определить давать ли ему кредит (сможет ли он его отдать)
- Распознавание изображений: по матрице пикселей понять, присутствует ли на изображении объект или нет
- Извлечение информации из текста: в последовательности символов (или слов) выявить важную для нас информацию (например, географическое название)

Машинное обучение. Обозначения



- X множество объектов $\{x_1, x_2, ... x_l\}$
- у классы (метки) объектов
- (x_i, y_i) обучающий пример
- l количество обучающих примеров в выборке
- Совокупность пар $X^l =$ $(x_i, y_i)^l$ - обучающая выборка

- Каждый объект x_i характеризуется набором признаков $f_i(x_i)$.
- Примеры признаков (задача кредитного скоринга):

обучения $a: X \to Y$, a(x) = y

- $f_1(x_i)$ зарплата клиента
- $f_2(x_i)$ количество детей

$$x_i = (f_1(x_i), f_2(x_i), ... f_n(x_i))$$

= (100, 1, 1, 0, 0, 0, 0, 1 ... 1)

• $f_3(x_i)$ - размер непогашенной задолженности

Процесс обучения

- Пусть имеется два класса $y \in \{-1,1\}$
- Настраиваем на обучающей выборке линейный классификатор в виде:

$$a(x,w) = sign(\langle w, x \rangle - w_0) = sign\left(\sum_{j=1}^n w_j f_j(x) - w_0\right)$$

w – параметры алгоритма

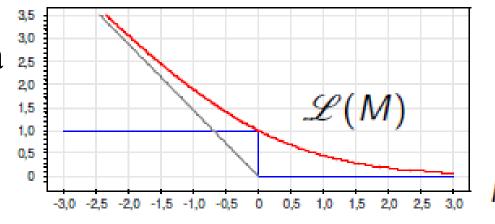
• Отступ (margin) на объекте x_i : $M_i(w) = y_i a(x_i, w)$, если $M_i < 0$ – алгоритм ошибается, $M_i > 0$ – правильный ответ

• Минимизация функционала качества:
$$Q(w,X^l) = \sum_{i=1}^l [M_i(w) < 0] \to \min_{w} \text{ Функция потерь}$$

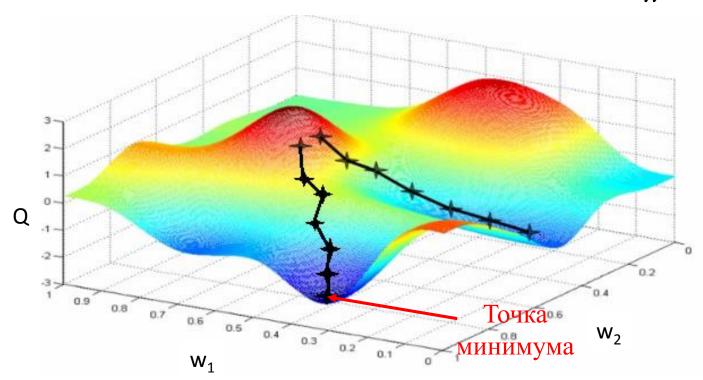
$$\sum_{i=1}^l [M_i(w) < 0] \leq \tilde{Q}(w,X^l) = \sum_{i=1}^l L(M_i(w)) \to \min_{w}$$

Минимизация функционала качества

- Функции потерь:
 - $L(M) = \log(1 + e^{-M})$
 - $L(M) = M^2$

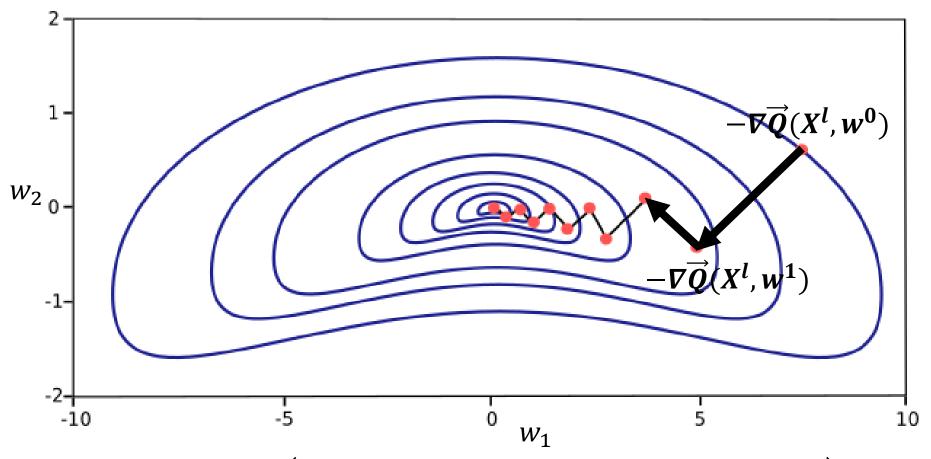


• Пример: $\tilde{Q}(w, X^l) = \sum_{i=1}^l (y_i a(x_i, w))^2 \to \min_w$



7/33

Градиентный спуск

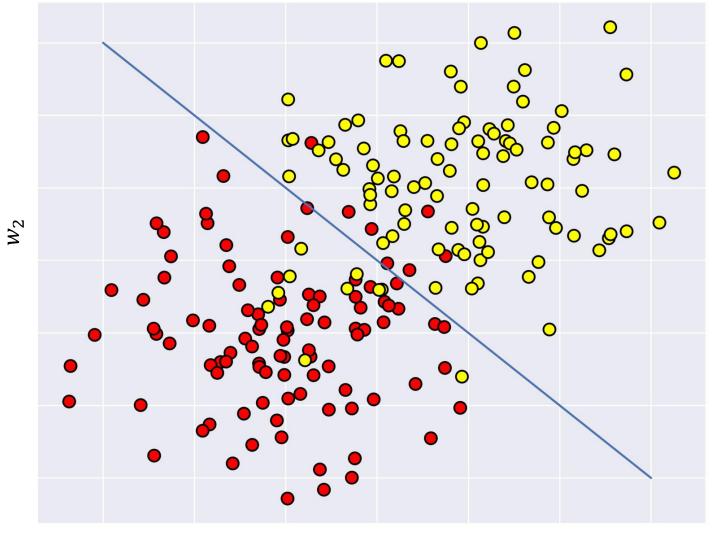


•
$$\nabla Q(X^l, w) = \left(\frac{\partial Q}{\partial w_0}(x, w), \frac{\partial Q}{\partial w_1}(x, w), \dots \frac{\partial Q}{\partial w_n}(x, w)\right)$$

•
$$w_{j+1} = w_j - \alpha \nabla Q(X^l, w_j), \ \alpha > 0, \ (\alpha = 0.01)$$

Разделяющая поверхность

$$a(x,w) = sign(\langle w, x \rangle - w_0) = sign\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right)$$



 w_1

Вероятностная постановка задачи машинного обучения

- Восстановить распределение вероятности:
 - p(x, y) генеративные модели
 - p(y|x) дискриминативные модели
- Ищем распределение из параметрического семейства $p(x,y) = \varphi(x,y,w)$, параметры w необходимо восстановить по обучающей выборке X^l
- Применяем принцип максимума правдоподобия
 - Ищем такие параметры *w*, при которых вероятность всей выборки максимальна

•
$$p(X^l) = p((x^1, y^1), (x^2, y^2), \dots, (x^l, y^l)) \stackrel{\text{iid}}{=} p(x^1, y^1) \dots p(x^l, y^l)$$

$$Likelyhood(w, X^l) = \prod_{i=1}^{l} \varphi(x_i, y_i, w) \to \max_{w}$$

$$-\ln\left(Likelyhood(w,X^{l})\right) = -\sum_{i=1}^{\infty}\ln(\varphi(x_{i},y_{i},w)) \to \min_{w}$$

Методы машинного обучения

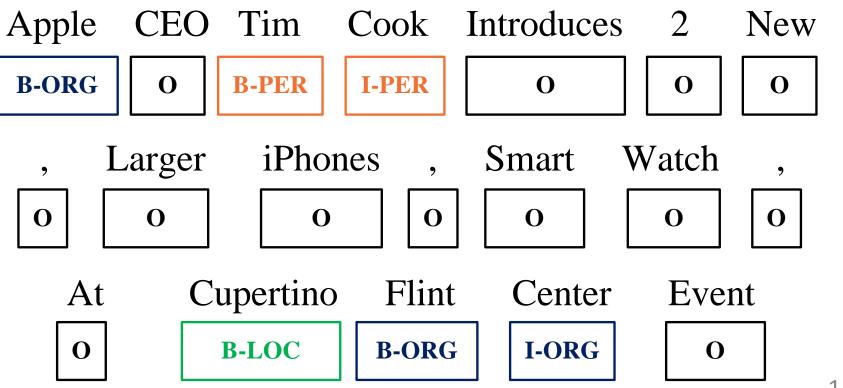
- «Классические»:
 - Линейные методы классификации:
 - Машина опорных векторов SVM
 - Логистическая регрессия
 - Деревья решений
 - Ансамбли:
 - Случайный лес решающих деревьев
 - Градиентный бустинг
 - Наивный байесовский классификатор
 - Модели на основе смеси гауссовских распределений
- Методы обработки последовательностей:
 - Скрытая марковская модель (НММ)
 - Модели на основе условных случайных полей (CRF)
- Нейронные сети (глубокое обучение):
 - Многослойные перцептроны
 - Сверточные сети
 - Рекуррентные нейронные сети

Извлечение именованных сущностей из текстов Named entity recognition (NER)

- Выделить в тексте отрезки, соответствующие объектам с наименованиями
- Понять к каким типам объектов относятся эти отрезки:
 - ФИО персоны
 - Название организации
 - Географическое название

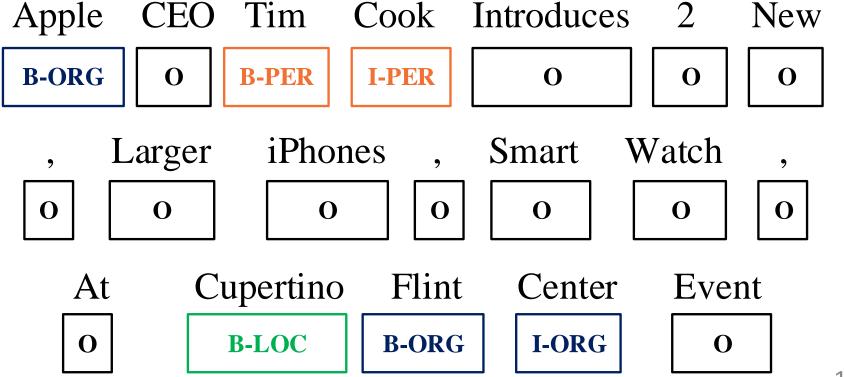
NER как задача машинного обучения

- Разметка BIO: Begin (B-), Inside (I-), Outside (O)
- Пример:
 - B-PER Токен является началом именованной сущности с типом «персона»
 - I-PER Токен находится в середине именованной сущности с типом «персона»
 - О Токен не входит в именованную сущность



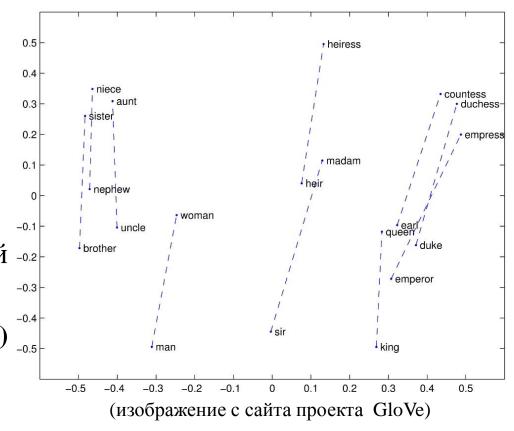
Обучающий корпус

- Корпус соревнования CoNLL-2003
 - https://www.clips.uantwerpen.be/conl12003/ner/
 - https://github.com/synalp/NER/tree/master/corpus/CoNLL-2003
- Разметка ВІО



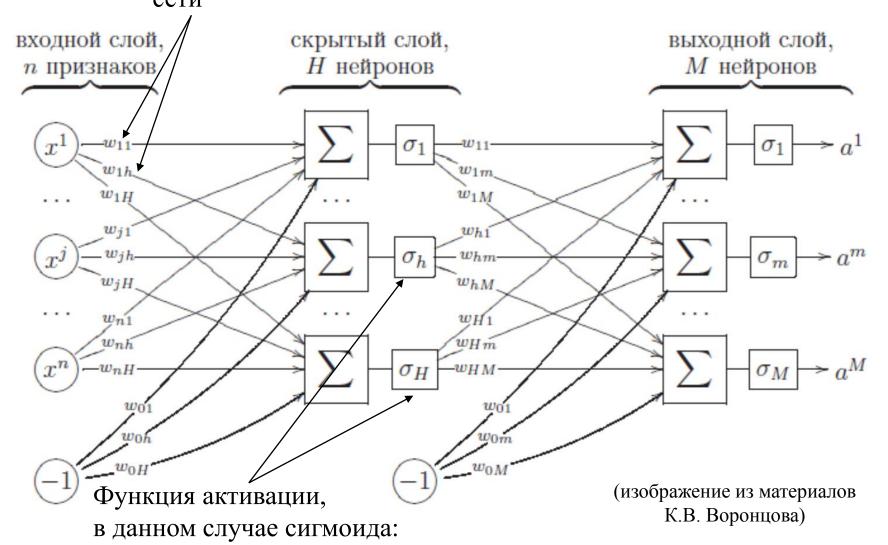
Признаки для обучения: векторные представления слов (word embeddings)

- Векторные представления слов:
 - emb(«банк») = $(0.91; 0.25; -0.11; \dots 0.87)$ (размерность обычно 50-1000)
- Кодируют смысловую близость слов
- При линейном преобразовании близкие вектора преобразуются в семантически близкие
- Строятся на большим неразмеченным корпусам: 10-100 млрд словоупотреблений
- Инструменты для построения:
 - Word2vec (Mikolov et al., 2013)
 - GloVe (Pennington et al., 2014)
- Предобученные модели:
 - Для английского: https://nlp.stanford.edu/projects/glove/
 - Для русского: http://rusvectores.org/ru/models/



Веса нейронной сети

Нейронные сети (граф математических операций)



 $\sigma(x) = \frac{1}{1 + e^{-x}}$

Обучение нейронной сети (1)

- Выходные значения сети $a^m(x_i)$, m = 1...M на объекте x_i и промежуточные значения сети $u^h(x_i)$:
 - $a^m(x_i) = \sigma_m(\sum_{h=0}^H w_{hm}u^h(x_i))$
 - $u^h(x_i) = \sigma_h\left(\sum_{j=0}^J w_{jh}f_j(x_i)\right)$
- Эмпирический риск:
 - $Q = \sum_{i=1}^{l} L(a^m(x_i), y_i)$
- По правилу вычисления производной сложной функции:

$$\frac{\partial Q}{\partial w_{hm}} = \sum_{i=1}^{l} \frac{\partial L(a^{m}(x_{i}), y_{i})}{\partial a^{m}} \frac{\partial a^{m}(x_{i})}{\partial w_{hm}}$$

$$\frac{\partial Q}{\partial w_{jh}} = \sum_{i=1}^{l} \frac{\partial L(a^{m}(x_{i}), y_{i})}{\partial u^{h}} \frac{\partial u^{h}(x_{i})}{\partial w_{hm}}$$

Обучение нейронной сети (2)

• Пусть
$$L(a(x), y) = \frac{1}{2} \sum_{m=1}^{M} (a^m(x_i) - y_i)^2$$
, тогда

• Ошибка на выходном слое:

$$\frac{\partial L_i(w)}{\partial a^m} = a^m(x_i) - y_i^m = \varepsilon_i^m$$

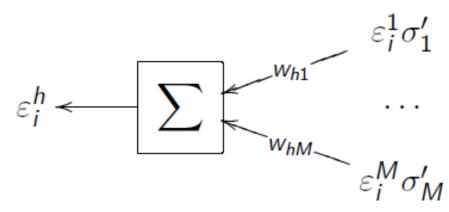
• Ошибка на скрытом слое

$$\frac{\partial L_i(w)}{\partial u^h} = \sum_{m=1}^M (a^m(x_i) - y_i^m))\sigma_m'w_{hm} = \sum_{m=1}^M \varepsilon_i^m \sigma_m'w_{hm} = \varepsilon_i^h$$

$$\frac{\partial Q}{\partial w_{hm}} = \sum_{i=1}^{l} \varepsilon_i^m \, \sigma_m' u^h(x_i)$$
 Алгоритм обратного распространения ошибки:

$$\frac{\partial Q}{\partial w_{jh}} = \sum_{i=1}^{l} \varepsilon_i^h \, \sigma_h' f_j(x_i)$$

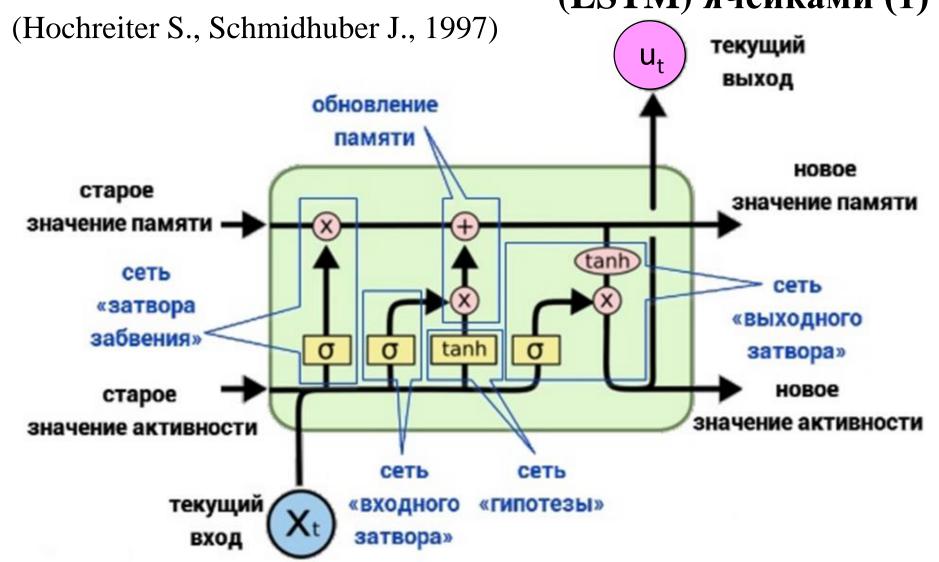
Алгоритм обратного



Рекуррентная нейронная сеть Обычная нейронная сеть Результат Результат Χ работы на t_0 работы на t_1 \mathbf{X}_0 X_{T} t_2 Apple CEOTim **Event**

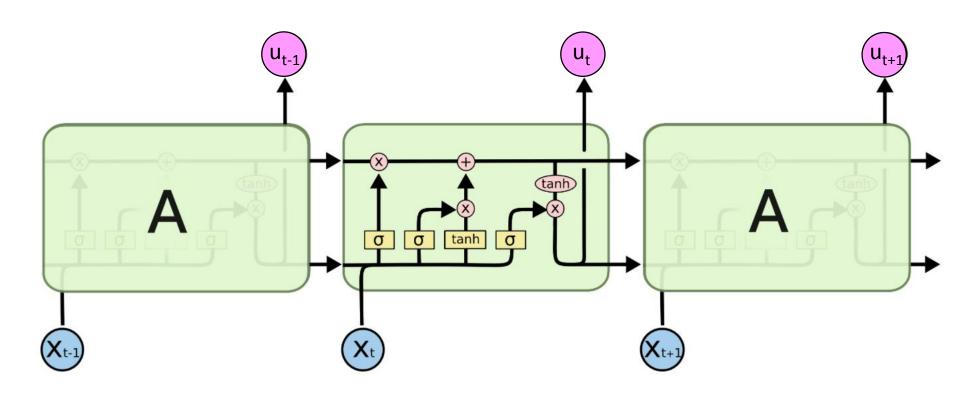
Входы нейронной сети (внешние данные)

Рекуррентная нейронная сеть с long-short memory (LSTM) ячейками (1)



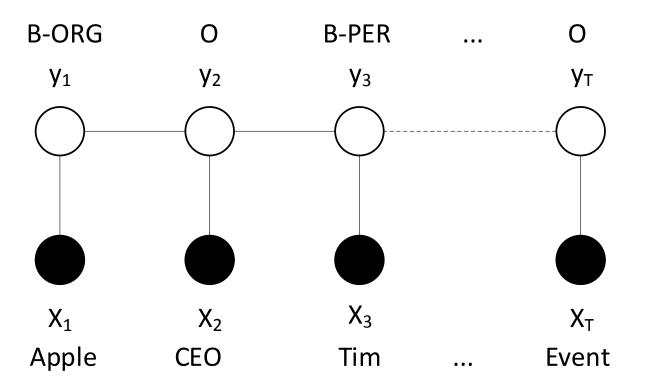
• LSTM решает проблему gradient vanishing

Рекуррентная нейронная сеть с LSTM ячейками (2)



Линейные условно случайные поля (Linear-chain CRF)

• Графическая вероятностная (Lafferty J., McCallum A. et al., 2001) модель линейного условно случайного поля:



• CRF позволяют учитывать метки (классы) соседних слов и глобально максимизировать вероятность всей последовательности меток

Линейные условно случайные поля

- Вычисление вероятности:
 - Для вычисления применяем динамическое программирование

$$p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp\left(\sum_{k=1}^{n} w_k f_k(y_t, y_{t-1}, x_t)\right)$$

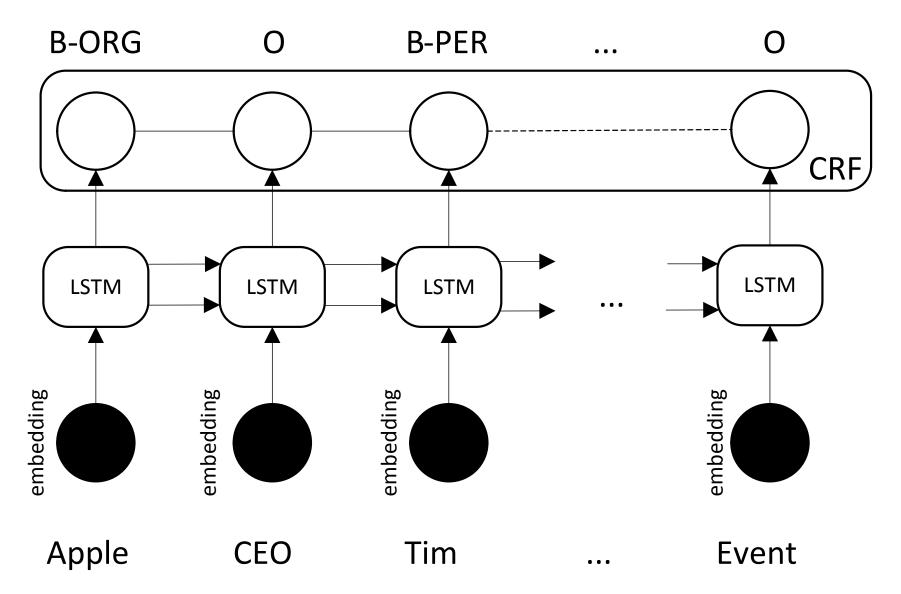
$$Z(x) = \sum_{v} \prod_{t=1}^{T} \exp \left(\sum_{k=1}^{n} w_k f_k(y_t, y_{t-1}, x_t) \right)$$

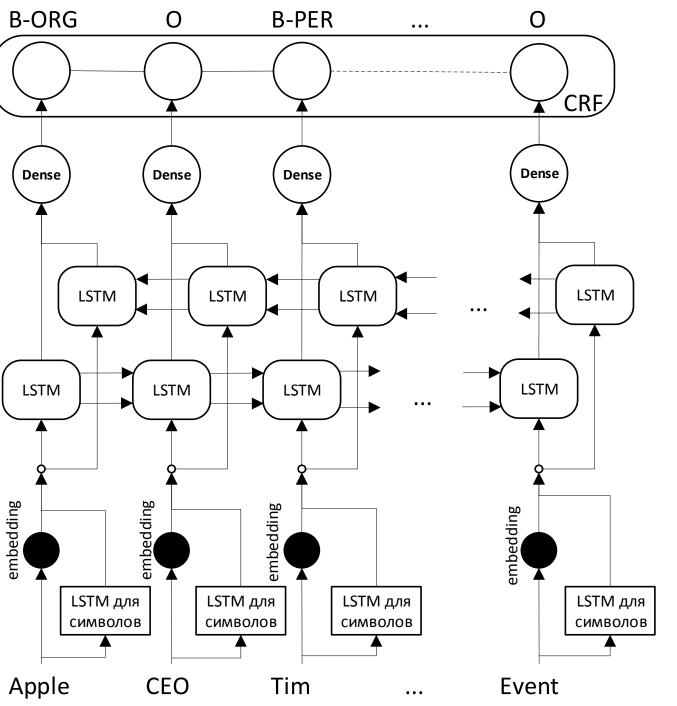
- Обучение:
 - Максимизация правдоподобия с помощью градиентного метода:

$$CRF_log_likelyhood(X^{l}, w) = \sum_{i=1}^{l} \sum_{t=1}^{T} \sum_{k=t}^{n} w_{k} f_{k}(y_{t}^{i}, y_{t-1}^{i}, x_{t}^{i}) - \sum_{i=1}^{l} \log(Z(x^{i}))$$

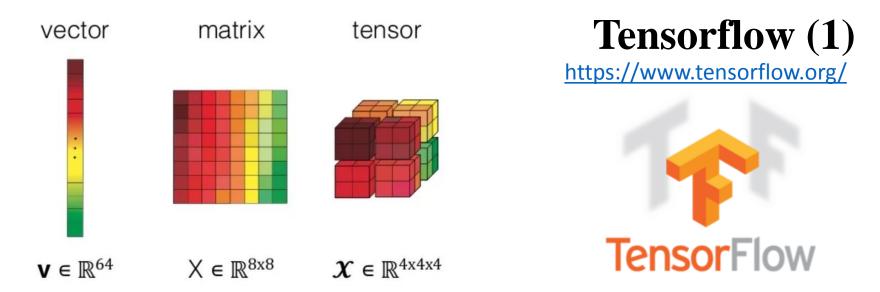
$$CRF_log_likelyhood(X^l, w) \rightarrow \max_{w}$$

Модель, совмещающая рекуррентные нейронные сети и случайные поля





Итоговая модель для NER

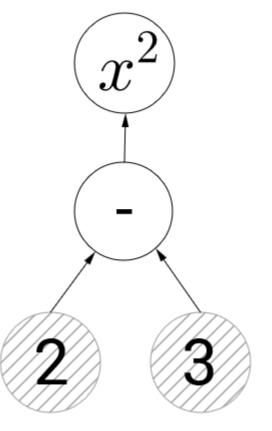


- Библиотека для тензорных вычислений с открытым исходным кодом (Python, C++ и др.), разработанная Google
- Тензор = многомерный массив (скаляр (массив с одним элементом), вектор, матрица, массивы с размерностями > 2)
- Параллельная обработка на:
 - CPU, GPU
 - Нескольких CPU, GPU, серверах
- Библиотека для машинного обучения (мат. операции, алгоритмы оптимизации, мат. модели, нейросетевые архитектуры и др.)

Tensorflow (2)

- Концепция работы Tensorflow:
 - Любые данные в библиотеке это тензоры (входные, выходные, промежуточные данные)
 - Вычисления проводятся внутри сессии
 - Перед началом работы сессии строится граф вычислений (граф математических операций)
 - При этом определяются точки ввода данных (placeholders)
 - Граф запускается на вычисление в рамках сессии, при этом всем placeholders передаются значения извне
 - Результат работы (тензор) можно извлечь из tensorflow и дальше работать с ним как с обычным многомерным массивом
 - Переменные внутри графа «живут» только пока «жива» сессия

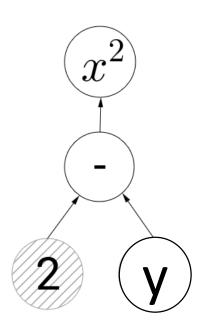
Tensorflow (3)



```
import tensorflow as tf
c1 = tf.constant(2.0)
c2 = tf.constant(3.0)
x = c1 - c2
x  sqrd = tf.square(x)
with tf.Session() as sess:
    print(sess.run(x sqrd))
```

1.0

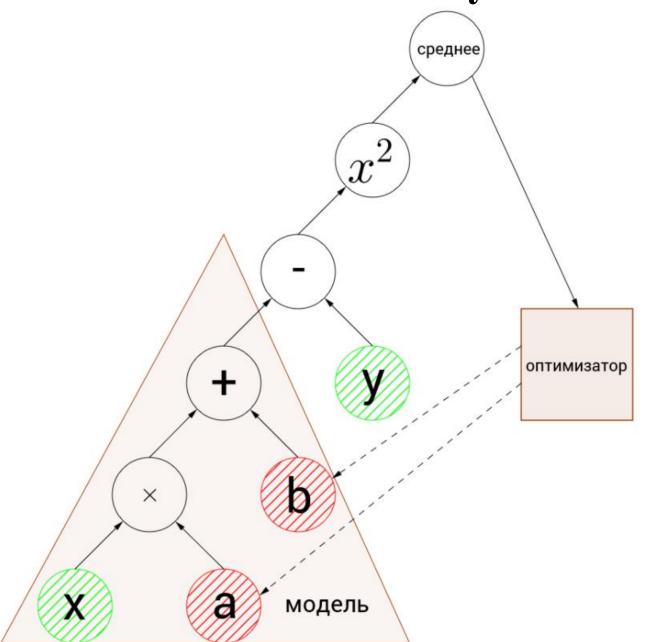
Tensorflow (4)



```
import tensorflow as tf
c1 = tf.constant(2.0)
y = tf.placeholder(tf.float32,
                    shape = [1],
                    name = 'y')
x = c1 - y
x_{sqrd} = tf.square(x)
with tf.Session() as sess:
    print(sess.run(x_sqrd,
                   feed_dict = \{y : [10.]\})
```

[64.]

Машинное обучение в Tensorflow



Live demo

- Для решения задачи потребуются
 - Python 3.6
 - Пакеты: numpy, scipy, sklearn, tensorflow, genism и др.
 - Jupyter IDE web-среда разработки для задач анализа данных
- Все это можно скачать и установить в 2 шага:
 - Установить Docker (среда управления виртуальными и псевдовиртуальными машинами)
 - Windows: https://www.docker.com/docker-windows
 - Mac: https://www.docker.com/docker-mac
 - Debian Linux: https://www.docker.com/docker-debian
 - Запустить команду:
 - docker run -ti --rm -v `pwd`:/notebook -p 8888:8888 windj007/jupyter-keras-tools
 - Jupyter поднимется по адресу http://localhost:8888
- Подробности: https://hub.docker.com/r/windj007/jupyter-keras-tools/
- Jupyter notebook с примером: http://nlp.isa.ru/hse/crf-lstm/

Заключение

- На сегодняшний день NLP и машинное обучение тесно связаны
- Быстро развиваются направления:
 - Deep learning (DL) (глубокие нейронные сети)
 - Embedding (векторные представления конструкций текста)
- Важным направлением в NLP является sequence modeling
 - С применением условно случайных полей
 - Рекуррентных нейронных сетей (LSTM)
- Хорошие инструменты, с которых можно начать применять глубокое обучение:
 - Tensorflow
 - Keras
- Чтобы быстро и просто начать использовать ML и DL (в том числе и на GPU) можно воспользоваться контейнером
 - Docker + https://hub.docker.com/r/windj007/jupyter-keras-tools/

• Машинное обучение:

Полезные материалы

- http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
- Глубокое обучение:
 - http://www.machinelearning.ru/wiki/images/7/71/Voron-ML-DeepLearning-slides.pdf
- Условно-случайные поля (CRF):
 - http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
- GitHub LSTM+CRF:
 - https://github.com/guillaumegenthial/sequence_tagging
- Статьи про модель типа LSTM+CRF:
 - https://arxiv.org/pdf/1603.01360.pdf
 - https://arxiv.org/pdf/1508.01991
 - https://arxiv.org/pdf/1709.09686 (Russian NER)
- Jupyter notebook с разобранным примером:
 - http://nlp.isa.ru/hse/crf-lstm/

Литература

- Mikolov T. et al. Distributed representations of words and phrases and their compositionality //Advances in neural information processing systems. 2013. C. 3111-3119
- Pennington J., Socher R., Manning C. Glove: Global vectors for word representation //Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. C. 1532-1543
- Hochreiter S., Schmidhuber J. Long short-term memory //Neural computation. 1997. T. 9. №. 8. C. 1735-1780
- Lafferty J., McCallum A., Pereira F. C. N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. 2001