Pattern mining in personal demographic trajectories

Dmitry I. Ignatov1, Danil Gizdatullin1, Ekaterina Mitrofanova1, Anna Muratova1, Jaume Baixeries2

1National Research University Higher School of Economics, Moscow
2Universitat Politècnica de Catalunya, Barcelona

2016, Moscow
Possible life events

- First job (job)
- The highest education degree is obtained (education)
- Leaving parents’ home (separation)
- First partner (partner)
- First marriage (marriage)
- First child birth (children)
- Break-up (parting)
- ... (divorce)
Generation and Gender Survey (GGS): three waves panel data for 11 generations of Russian citizens starting from 30s

Binary classification
1545 men
3312 women

Examples of sequential patterns
- \(\langle\{education, separation\}, \{work\}, \{marriage\}, \{children\}\rangle(m)\)
- \(\langle\{work\}, \{marriage\}, \{children\}\{education\}\rangle(f)\)
- \(\langle\{partner\}, \{marriage, separation\}, \{children\}\rangle(f)\)
Basic definitions
Textbooks of Han et al., Zaki & Meira, Aggarwal et al., etc

- $s = \langle s_1, ..., s_k \rangle$ is the **subsequence** of $s' = \langle s'_1, ..., s'_k \rangle$ ($s \preceq s'$) if $k \leq k'$ and there exist $1 \leq r_1 < r_2 < ... < r_k \leq k'$ such $s_j = s'_{r_j}$ for all $1 \leq j \leq k$.

- $\text{support}(s, D)$ is the **support** of a sequence s in D, i.e. the number of sequences in D such that s is their subsequence.

$$\text{support}(s, D) = |\{s'| s' \in D, s \preceq s'\}|$$

- s is a **frequent closed sequence (sequential pattern)** if there is no s' such that $s \prec s'$ and

$$\text{support}(s, D) = \text{support}(s', D)$$
Let D be a set of sequences:

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>${a, b, c}{a, b}{b}$</td>
<td>${a}{a, c}{a}$</td>
<td>${a, b}{b, c}$</td>
</tr>
</tbody>
</table>

- $I = \{a, b, c\}$ is the set of all items (atomic events)
- $\langle\{a, b\}\{b\}\rangle$ belongs to s_1 and s_3 but it is missing in s_2
- $\text{support}_D(\langle\{a, b\}\{b\}\rangle) = 2$
- $\{\langle\{a\}\rangle, \langle\{c\}\rangle, \langle\{a\}\{c\}\rangle, \langle\{a, b\}\{b\}\rangle, \langle\{a, c\}\{a\}\rangle\}$ is the set of closed sequences.
Contiguous prefix-based sequential patterns

- \(s = \langle s_1, \ldots, s_k \rangle \) is a contiguous prefix-based subsequence of \(s' = \langle s'_1, \ldots, s'_k \rangle \) (\(s* = s' \)) if \(k \leq k' \) and \(\forall i \in k' : s_i = s'_i \).

- **Support of contiguous prefix-based sequences**
 Let \(T \) be a set of sequences.

 \[
 \text{support}(s, T) = \frac{|\{s' | s' \in T, s* = s'\}|}{|T|}
 \]
Let $0 < \text{minSup} \leq 1$ be a minimal support parameter and D is a set of sequences then searching for prefix-based contiguous sequential patterns is the task of enumeration of all prefix-based contiguous sequences s such that $\text{support}(s, D) \geq \text{minSup}$. Every sequence s with $\text{support}(s, D) \geq \text{minSup}$ is called a prefix-based contiguous sequential pattern.

Prefix-based contiguous sequential pattern (PGSP) p is called closed if there is no PGSP d of greater or equal support such that $d = p$.
Contiguous sequential patterns

Example

Таблица: D is a set of sequences.

<table>
<thead>
<tr>
<th>s_1</th>
<th>${a}{b}{d}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_2</td>
<td>${a}{b}{c}$</td>
</tr>
<tr>
<td>s_3</td>
<td>${a, b}{b, c}$</td>
</tr>
</tbody>
</table>

$s = \langle\{a\}\{b\}\rangle$

- $I = \{a, b, c\}$ is the set of all items (atomic events)
- $s_1 = s^*; s_2 = s^*$
- $s_3 \neq s^*$
- $\text{Supp}_D(s) = \frac{2}{3}$
- $\langle\{a\}\{b\}\rangle$ is closed, $\langle\{a\}\rangle$ is not closed.
Growth Rate

\[
growth_{\text{rate}}_{D' \rightarrow D''}(X) = \begin{cases}
\frac{\text{supp}_{D''}(X)}{\text{supp}_{D'}(X)} & \text{if } \text{supp}_{D'}(X) \neq 0 \\
0 & \text{if } \text{supp}_{D''}(X) = \text{supp}(X) = 0 \\
\infty & \text{if } \text{supp}_{D''}(X) \neq 0 \text{ and } \text{supp}_{D'}(X) = 0
\end{cases}
\]

Class score

\[
\text{score}(s, C) = \sum_{e \subseteq s, e \in E(c)} \frac{growth_{\text{rate}}_C(e)}{growth_{\text{rate}}_C(e) + 1} \cdot \text{supp}_C(e)
\]
s is a new object

\[\text{normal}_{\oplus}(s) = \frac{\sum_{p \in P_{\oplus} : p \subseteq s} \text{GrowthRate}(p, K_{\oplus}, K_{\ominus})}{\text{median(\text{GrowthRate}(P_{\oplus}))}} \]

\[\text{normal}_{\ominus}(s) = \frac{\sum_{p \in P_{\ominus} : p \subseteq s} \text{GrowthRate}(p, K_{\ominus}, K_{\oplus})}{\text{median(\text{GrowthRate}(P_{\ominus}))}} \]

Classification via emerging patterns

\[
\text{class}(s) = \begin{cases}
\text{positive if } \text{normal}_{\oplus}(s) > \text{normal}_{\ominus}(s) \\
\text{negative if } \text{normal}_{\oplus}(s) < \text{normal}_{\ominus}(s) \\
\text{undetermined if } \text{normal}_{\oplus}(s) = \text{normal}_{\ominus}(s)
\end{cases}
\]
Execution example

Input sequences

class 0 : {⟨{a}{b}{c}⟩, ⟨{b}{a}{c}⟩, ⟨{b}{a}{c}⟩, ⟨{b}{c}⟩}
class 1 : {⟨{a}{c}{b}⟩, ⟨{b}{c}{a}⟩, ⟨{b}{c}{a}⟩}

Prefix tree

```
    ∅
   / \
  a(1;1) b(2;2)
 /     /     \
 b(1;0) c(0;1) a(2;0) c(1;2)
 /     /     \
 c(1;0) b(0;1) c(2;0) a(0;2)
```
Counting Growth Rate

\[\emptyset \]

- \(a(0.75; 1.33) \)
 - \(b(\infty; 0) \)
 - \(c(0; \infty) \)
- \(b(\infty; 0) \)
- \(c(0; \infty) \)
- \(a(\infty; 0) \)
 - \(c(0.38; 2.67) \)
 - \(a(0; \infty) \)

Growth rate

\[
0.75 = \frac{1}{4} / \frac{1}{3} ; 1.33 = \frac{1}{3} / \frac{1}{4} \\
0.38 = \frac{1}{4} / \frac{2}{3} ; 2.67 = \frac{2}{3} / \frac{1}{4}
\]
Computing Score

\[
\emptyset
\]

\[
\begin{array}{c}
\text{a}(0.75; 1.33) \\
\text{b}(\infty; 0) \\
\text{c}(\infty; 0)
\end{array}
\quad
\begin{array}{c}
\text{b}(0.75; 1.33) \\
\text{c}(0; \infty) \\
\text{a}(\infty; 0) \\
\text{c}(0.38; 2.67)
\end{array}
\]

New sequence

\[
\text{minGR} = 2
\]

\[
\langle \{b\}; \{c\}; \{a\} \rangle - ???
\]

\[
\text{Score}_0 = 0
\]

\[
\text{Score}_1 = 2.67 + \infty = \infty
\]
Comparison of closed and non-closed patterns

Рис.: TPR vs FPR for closed and non-closed patterns
Experiments and results

Рис.: TPR-FPR for classification by gender via contiguous prefix-based patterns
Interesting patterns (women)

\[
\langle\{\text{work, separation}\}, \{\text{marriage}\}, \{\text{children}\}, \{\text{education}\}\rangle, [\infty, 0.006]
\]

\[
\langle\{\text{separation, partner}\}, \{\text{marriage}\}\rangle, [\infty, 0.006]
\]

\[
\langle\{\text{work, separation}\}, \{\text{marriage}\}, \{\text{children}\}\rangle, [\infty, 0.008]
\]

\[
\langle\{\text{work, separation}\}, \{\text{marriage}\}\rangle, [\infty, 0.009]
\]
Interesting patterns (men)

\((\langle\{\text{education}\}, \{\text{marriage}\}, \{\text{work}\}, \{\text{children}\}, \{\text{separation}\}\rangle, [10.6, 0.006])\)

\((\langle\{\text{education}\}, \{\text{marriage}\}, \{\text{work}\}, \{\text{children}\}\rangle, [12.7, 0.007])\)

\((\langle\{\text{educ}\}, \{\text{work}\}, \{\text{part}\}, \{\text{mar}\}, \{\text{sep}\}, \{\text{ch}\}\rangle, [10.6, 0.006])\)
Experiments and results

Рис.: TPR-FPR for classification by generation via contiguous prefix-based patterns
Interesting patterns (Different Generations; Women)

Old women

- $\langle\{\text{work}\}, \{\text{separation}\}\rangle$, $[1.85, 0.38]$
- $\langle\{\text{work}\}, \{\text{marriage}, \text{separation}\}\rangle$, $[3.92, 0.08]$

Young women

- $\langle\{\text{education}\}\rangle$, $[1.84, 0.26]$
- $\langle\{\text{education}\}, \{\text{work}\}\rangle$, $[4.01, 0.1]$
Рис.: TPR-FPR for classification by generation via contiguous prefix-based patterns
Old men

- \((\{\{\text{work}\}\}, \{\text{marriage, separation}\}, \{\text{education}\}), [13.52, 0.025])\)
- \((\{\{\text{work}\}\}, \{\text{marriage}\}, \{\text{separation}\}), [22.87, 0.042])\)
- \((\{\{\text{work}\}\}, \{\text{marriage}\}, \{\text{separation}\}, \{\text{education}\}), [\infty, 0.0208])\)

Young men

- \((\{\{\text{education}\}\}, \{\text{work}\}, \{\text{separation}\}, \{\text{marriage}\}, \{\text{children}\}), [10.58, 0.020])\)
- \((\{\{\text{education}\}\}, \{\text{work}\}, \{\text{separation, partner}\}, \{\text{marriage}\}), [8.65, 0.016])\)
- \((\{\{\text{education}\}\}, \{\text{marriage, separation}\}), [7.69, 0.015])\)
We have studied several pattern mining techniques for demographic sequences including pattern-based classification in particular.

We have fitted existing approaches for sequence mining of a special type (contiguous and prefix-based ones).

The results for different demographic groups (classes) have been obtained and interpreted.

In particular, a classifier based on emerging sequences and pattern structures has been proposed.
Thank you!

Questions?