Теоремы об ускорении для арифметики Пресбургера

Федор Пахомов ВШЭ. Факультет математики Математический институт им. В.А. Стеклова pakhfn@gmail.com

Междисциплинарный семинар «Математика, компьютерные технологии и информационные технологии» ВШЭ. Факультет компьютерных наук 12 декабря 2017

シック・ビートボット・ビート (型・トロー)

Abstract Proof Systems

Abstract polynomial proof system $\mathcal{S} = (\mathcal{L}, \mathcal{P}, \mathsf{Prf})$:

- \mathcal{L} is the set of formulas
- \mathcal{P} is the set of proofs
- ▶ relation $\mathsf{Prf}(p, \varphi)$, for $\varphi \in \mathcal{L}$ and $p \in \mathcal{P}$
- \blacktriangleright here ${\cal L}$ and ${\cal P}$ are set of strings in finite alphabet
- $Prf(p, \varphi)$ is PTIME-decidable property

We will be interested in the situations when \mathcal{L} is propositional language \mathcal{L}_{PC} or set of sentences \mathcal{L}_{T} of the language of some first-order theory T.

Speed-up

Suppose $S = (\mathcal{L}, \mathcal{P}, \mathsf{Prf})$ is a proof system. We write $S \vdash^n \varphi$ if $\varphi \in \mathcal{L}$ and there exists $p \in \mathcal{P}$ such that $\mathsf{Prf}(p, \varphi)$ and $|p| \leq n$.

Suppose $S_1 = (\mathcal{L}_1, \mathcal{P}_1, \mathsf{Prf}_1)$ and $S_2 = (\mathcal{L}_2, \mathcal{P}_2, \mathsf{Prf}_2)$. We say that there is $f : \mathbb{N} \to \mathbb{N}$ speed-up of S_1 over S_2 if there are sequences

$$arphi_1, arphi_2, \ldots \in \mathcal{L}_1 \cap \mathcal{L}_2 \quad n_1 < n_2 < \ldots$$

 $\mathcal{S}_1 \vdash arphi_i \quad \mathcal{S}_2 \vdash arphi_i$
 $\mathcal{S}_1 \vdash^{n_i} arphi_i \quad \mathcal{S}_2
eq f(n) arphi_i$

Propositional and First-order Proof System

Proof systems	Propositional	language of PA
typical	super-polynomial	super-exponential or
speed-up	at most exponential	arbitrary recursive
methods to	various	digitalization and
prove speed-up	combinatorial	Gödel's 2nd incompleteness

Theorem (Cook and Reckhow '79)

There exists a propositional proof system S such that if NP = co-NP then there is a polynomial p(x):

$$\mathcal{S} \vdash \varphi \Rightarrow \mathcal{S} \vdash^{p(n)} \varphi$$

*ロ * * ◎ * * ■ * * ■ * * ● * * ●

Arbitrary recursive speed-up

Theorem (Gödel '36)

For Peano arithmetic PA and any recursive $f:\mathbb{N}\to\mathbb{N}$ there is a sequence of formulas

$$\varphi_1, \varphi_2, \ldots \in \mathcal{PA} \quad \mathsf{PA} \vdash \varphi_i \quad \mathsf{PA} \nvDash^{f(|\varphi_i|)} \varphi_i.$$

Theorem (Ehrenfeucht and Mycielski '71) If theory $T + \neg \varphi$ is undecidable then $T + \varphi$ have arbitrary recursive speed-up over T.

(日)

Conservative extensions

$$\exp^*(0) = 1 \quad \exp^*(n+1) = 2^{\exp^*(n)}$$

NBG (von Neumann, Bernays, Gödel set-theory) is a set-theory with classes as explicit objects. NBG is a conservative extension of ZFC, i.e. they prove the same theorems in the language of pure set-theory (without classes).

Theorem (Pudlák '86)

NGB have $\exp^*(x^{\varepsilon})$ speed-up over ZFC, for some $\varepsilon > 0$. ACA₀ have $\exp^*(x^{\varepsilon})$ speed-up over PA, for some $\varepsilon > 0$.

Theorem (Pudlák)

Sequent calculus for first-order logic with cuts LK_{cut} have $exp^*(x^{\varepsilon})$ speed-up over cut-free $LK_{cut-free}$, for some $\varepsilon > 0$.

Gödel's 2-nd incompleteness on finite domain

Robinson's arithmetic Q is essentially PA - Induction.

Theorem (Gödel '31 (with further improvments))

Any consistent extension of Robinson's arithmetic Q couldn't prove its own (Hilbert) consistency.

Let us denote by $Con(T) \upharpoonright n$ the arithmetization of statement that $S \nvDash^n \varphi \land \neg \varphi$, for any φ . Note that we use binary numerals and hence $|Con(T) \upharpoonright n| = \mathcal{O}(\log(n))$.

Theorem (H. Friedman (unpublished), Pudlák '85)

For any extension T of Q there is $\varepsilon > 0$ such that

 $\mathsf{T} \nvDash^{n^{\varepsilon}} \mathsf{Con}(\mathsf{T}) \upharpoonright n.$

Pudlák's Conjecture

Theorem (Pudlák '85)

For any "reasonable" $T \supseteq Q$ (this includes finitely axiomatizable theories and natural schematic theories like PA, ZFC, etc.) there exist polynomial p(x) such that

 $\mathsf{T} \vdash^{p(n)} \mathsf{Con}(\mathsf{T}) \upharpoonright n.$

Conjecture (Pudlák '17)

1. For any theory $T \supseteq Q$ there exists theory $S \supset T$ such that for any polynomial p(x) there exists n such that

 $\mathsf{T} \nvDash^{p(n)} \mathsf{Con}(\mathsf{S}) \upharpoonright n.$

2. Conjecture 1. holds for S = T + Con(T).

Any arithmetical first-order theory naturally gives a (very strong) propositional proof system since propositional language could be naturally embedded in arithmetic.

Note that $|(Con(T) \upharpoonright n)^{Prop}| = O(n)$.

Essentially, Pudlak's conjecture provides propositional tautologies $(Con(T) \upharpoonright n)^{Prop}$ that could be use to separate propositional proof system of increasing strength.

More on Pudlák's Conjecture

```
Theorem (Hrubeš '17)
```

There exists Π_1 -sentence F unprovable in PA such that for some polynomial p(x):

 $\mathsf{PA} \vdash^{p(n)} \mathsf{Con}(\mathsf{PA} + \mathsf{F}) \upharpoonright n.$

Theorem (Freund, P. '17)

For slow consistency statement $Con^*(PA)$ for PA (due to S. Friedman, Rathjen, Weiermann '13) there exists polynomial p(x):

$$\mathsf{PA} \vdash^{p(n)} \mathsf{Con}(\mathsf{PA} + \mathsf{Con}^*(\mathsf{PA})) \upharpoonright n$$

Moreover there is total recursive function $F_{\varepsilon_0}^*$ which totality isn't provable in PA such that for some polynomial p(x):

$$\mathsf{PA} \vdash^{p(n)} \mathsf{Con}(\mathsf{PA} + "F^*_{\varepsilon_0} \text{ is total"}) \upharpoonright n.$$

Presburger Arithmetic

Presburger arithmetic PrA is a theory in the language $\langle=,0,1,+\rangle.$ Axioms of PrA are

1. $\neg (0 = x + 1)$ 2. $x + 1 = y + 1 \rightarrow x = y$ 3. x + 0 = x4. x + (y + 1) = (x + y) + 15. $F(0) \rightarrow (\forall x (F(x) \rightarrow F(x + 1)) \rightarrow \forall x F(x))$, for all formulas F(x) of the language of PrA

< 日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○

Theorem (Presburger '29)

Theory PrA is decidable and complete.

We consider $\mathcal{L}_{\mathsf{PrA}} \subset \mathcal{L}_{\mathsf{PA}}$.

Speed-up in Presburger Arithmetic

Theorem

For some $\varepsilon > 0$ there is $\exp^*(x^{\varepsilon})$ speed-up of Q over Presburger arithmetic.

Note that however Q is very weak system that is not able to prove some theorem of PrA, in particular commutativity and associativity of +.

Moreover,

Theorem

For any consistent $T, S \supset Q$, if $S \vdash Con(T)$ then for some $\varepsilon > 0$ there is $\exp^*(x^{\varepsilon})$ speed-up of S over T in the language of PrA.

On the other hand there exists polynomial p(x):

 $\mathsf{PrA} \vdash^{\exp(\exp(\exp(p(|\mathsf{F}|))))} \mathsf{F}.$

More on Presburger Arithmetic

Theorem (Presburger '29) Theory PrA is decidable and complete.

Theorem

In S_2^1 completeness and decidability of PrA is equivalent to totality of exponentiation.

(日)

Спасибо!

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへぐ