DEEP IMAGE DEBLURRING

K. V. Kolchin Media Processing Team SAMSUNG Research Russia

Problem Statement

Long exposures and camera shake lead to **image blur**, which makes images unusable. This can happen both in low light and normal situations.

Camera Motion

Normal light blur

Low light blur

Simple solution -> Reduce exposure time and increase sensitivity

But it induces noise and color degradation

High Sensitivity -> More Noise

Short exposure -> Underexposure

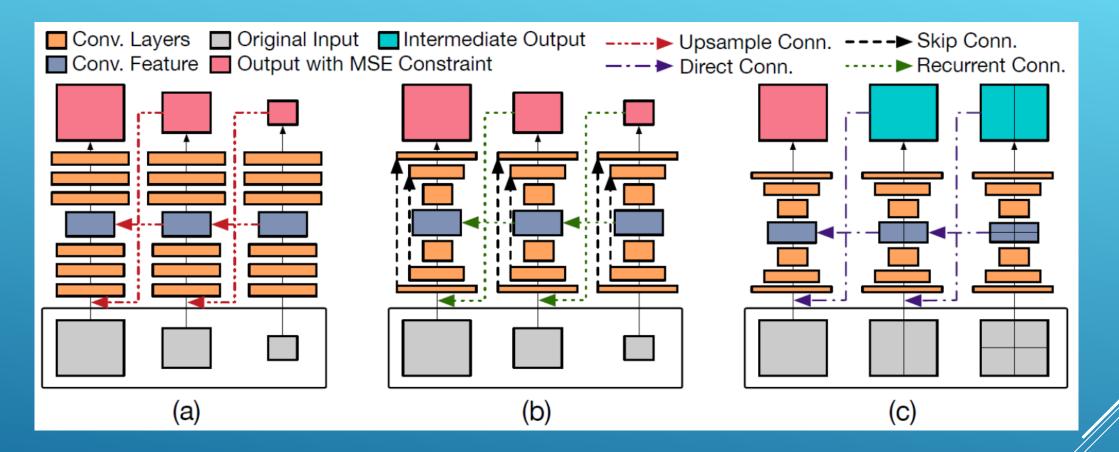
Low light -> Color Degradation

Deblur Examples

All the images were processed by neural networks

Deblur Examples

All the images were processed by neural networks



Three Recent Solutions

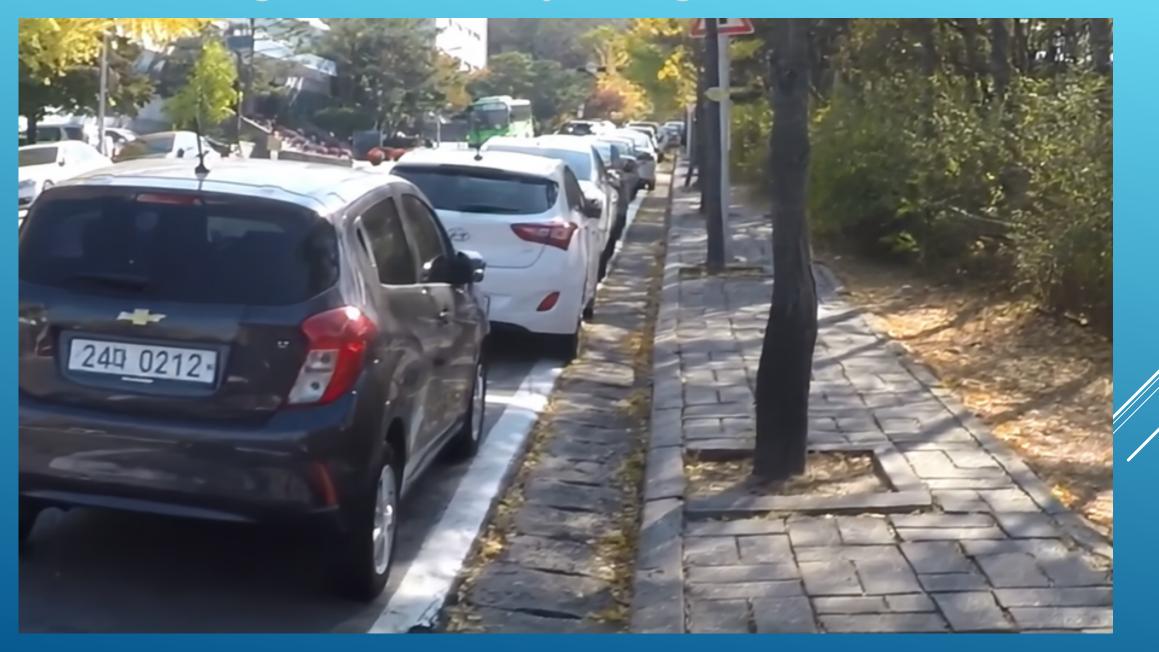
Comparison of three recent network architectures - (a) multi-scale, Nah et al. [2], (b) multi-scale recurrent, Tao et al. [3] and (c) H. Zhang's hierarchical multi-patch architecture [10]. Notice that H. Zhang's model does not employ any skip or recurrent connections. That is why it is faster than the other two solutions.

State of the Art

Charts of PSNR as a function of runtime, sec, and neural network size, MB.

References

- 1. J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional neural network for non-uniform motion blur removal. In CVPR, pages 769–777. IEEE, 2015.
- 2. S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. pages 3883–3891, 2017.
- 3. Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, Jiaya Jia, Scale-recurrent Network for Deep Image Deblurring, CVPR 2018.
- 4. Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, Jiri Matas, DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks, CVPR 2018.
- 5. Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Linchao Bao, Rynson Lau, and Ming-Hsuan Yang, "Dynamic Scene Deblurring Using Spatially Variant Recurrent Neural Networks", CVPR 2018.
- 6. Xinyi Zhang, Hang Dong, Zhe Hu, Wei-Sheng Lai, Fei Wang, Ming-Hsuan Yang, Gated Fusion Network for Joint Image Deblurring and Super-Resolution, arXiv, 2018.
- 7. Yiwei Zhang, Chunbiao Zhu, Ge Li, Yuan Zhao, Haifeng Shen, Bi-Skip: A Motion Deblurring Network Using Self-paced Learning, arXiv, 2019.
- 8. Kai Zhang, Wangmeng Zuo, Lei Zhang, Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels, CVAR 2019.
- 9. Dongwon Park, Jisoo Kim, Se Young Chun, Down-Scaling with Learned Kernels in Multi-Scale Deep Neural Networks for Non-Uniform Single Image Deblurring, arXiv, 2019.
- 10. Zhang, Hongguang, Yuchao Dai, Hongdong Li, Piotr Koniusz, "Deep Stacked Hierarchical Multi-patch Network for Image Deblurring," CVPR 2019.
- 11. J Cai, W Zuo, L Zhang, Extreme Channel Prior Embedded Network for Dynamic Scene Deblurring, arXiv preprint arXiv:1903.00763, 2019.


Blurred Image from the GOPRO dataset

Blurred Image Deblurred by Tao [3]

Blurred Image Deblurred by Zhang [10]

Project Proposal

- The goal of the project is to develop a neural network to recover the image closest to the original one.
- The expected result is a neural network model that, after training, could eliminate motion blur in digital photos in no more than a few (2-3) seconds (on a PC with an NVIDIA GTX 1080 Ti) and with a quality of at least 30 decibels of PSNR for test images (in the presence of a reference image without blur).

ТНАМК YOU 감사합니다 СПАСИБО

SAMSUNG

Samsung R&D Institute Russia