Оперативный комплексный прогноз приземных метеоэлементов: температуры и влажности воздуха, ветра и количества осадков с заблаговременностью 6 - 144 ч по городам России, Беларуси и республик Средней Азии

<u>Ф.Л.Быков,</u> А.Н.Багров, В.А.Гордин при участии Н.А. Светловой и отдела информационных технологий

Оперативный комплексный прогноз:

- использует прогнозов 7 лучших прогностических моделей, а также архивы этих прогнозов и наблюдений на 2800 метеостанциях на территории России, стран Восточной Европы и Средней Азии;
- даёт прогнозы температуры и влажности воздуха с шагом 3 часа, минимальной ночной и максимальной дневной температур с заблаговременностью 6-144 ч;
- даёт прогнозы направления и скорости ветра, включая порывы, а также 6ч суммы осадков;
- показывает оценки лучше, чем у лучшей из используемых моделей;
- для 303 пунктов России и Республики Беларусь, а так же отдельно для 90 городов Средней Азии выкладывается на сайты Гидрометцентра России в 8.30 и 20.30 мск.

В Гидрометцентре России доступны приземные прогностические поля по различным гидродинамическим моделям, в том числе:

Модель (откуда	Шаг	Заблаговре-	T T_d		U,V	P_0	G
nocmynaem)	сетки	менности $ au$					(порывы)
CosmoRu-6-ENA (РФ)	6.6км	до 120ч, шаг 3ч					
GEM (Канада)	0,24 ^O	до 144ч, шаг 3ч					
ICON (Германия)	0,25°	до 168ч, шаг 6ч					
GFS (CIIIA)	0,5°	до 180ч, шаг 3ч					
ECMWF (EC)	0,5°	до 168ч, шаг 6ч					
UKMO	1 ^O	до 48ч, шаг 6ч					
(Великобритания)	2,5°	до 120ч, шаг 12ч					
ЈМА (Япония)	1,25 °	до 72ч, шаг 6ч					

Подробности реализации

В 5.00 и 17.00 ВСВ в специальную базу данных (БД) записываются: 1) доступные результаты этих прогнозов (от 0ч и 12ч ВСВ соотв.), проинтерполированные в точки 2800 станций методом билинейной интерполяции; 2) данные соответствующих наблюдений на станциях, прошедшие контроль. Используя БД, алгоритм нашего прогноза дает прогнозы для тех станций, архив наблюдений на которых за последние 25 дней имеет менее 30% пропусков. Новая версия комплексного прогноза с заблаговременностью до 144ч с шагом 3ч работает оперативно с апреля 2019, а с сентября 2019 публикуется в 8.30 и 20.30 мск:

- 1. Для 303 пунктов России и Беларуси на сайте http://method.meteorf.ru/ansambl/ansambl.html
- 2. Для 91 пункта Средней Азии на сайте http://swfdp-ca.meteoinfo.ru/prognozy/mmforecasts

Комплексный прогноз вычисляется в 3 этапа:

- 1. Вычисление предварительного варианта прогноза, независимо для каждой метеоэлемента и каждой заблаговременности
- 2. Фильтр Калмана независимо для каждого метеоэлемента, но с использованием близких заблаговременностей
- 3. Коррекция с помощью глубоких нейронных сетей с учетом динамики всех метеоэлементов в данной точке

Также существует специальная версия, использующая только прогнозы модели CosmoRu-6-ENA (на графиках оценок далее Cosmo6.6+c), оперативно публикуемая на сайте http://u2019.meteoinfo.ru/services/east/

Коррекция с помощью глубоких нейронных сетей

Рассмотрим $\vec{\Psi}(t,\tau,\vec{x})$ — прогноз приземных метеорологических параметров в точке \vec{x} от срока t на $t+\tau$, состоящий из k=5 компонент: $T, T_d, P_0, S = \sqrt{U^2 + V^2}, G$ Нейронная сеть оценивает оптимальную нелинейную поправку \vec{F} , которую можно вычислять в различных точках \vec{x} независимо, используя динамику прогнозов в точке \vec{x} , т.о. поправленный прогноз $\vec{\Psi}_N$ равен:

$$\vec{\Psi}_{N}\left(t,\tau,\vec{x}\right) = \vec{\Psi}\left(t,\tau,\vec{x}\right) + \vec{F}\left(\vec{\varphi}\left(t+\tau,\vec{x}\right),\tau,\vec{\Psi}\left(t-\Delta t_{1},\tau-\Delta\tau_{1},\vec{x}\right),...,\vec{\Psi}\left(t-\Delta t_{m},\tau-\Delta\tau_{m},\vec{x}\right)\right) = \vec{\Psi}\left(t,\tau,\vec{x}\right) + \vec{F}\left(y_{1},...,y_{n}\right),$$

где n=61, а вектор-функция $\vec{\varphi}(t+\tau,\vec{x})$ описывает, например, время суток, время года, широту и долготу.

В список предикторов \mathcal{Y}_j входят в т.ч. следующие 14 значений температуры: $T(t,\tau-6u),T(t,\tau-3u),T(t,\tau+3u),T(t,\tau+6u),T(t-12u,\tau+6u),T(t-12u,\tau+12u),T(t-12u,\tau+18u),$

 $T(t-24u,\tau-6u),T(t-24u,\tau),T(t-24u,\tau+6u),\ T(t-48u,\tau-6u),T(t-48u,\tau),T(t-48u,\tau+6u).$ Все эти значения прогнозируют на время суток, отличающиеся от $t+\tau$ на не более чем 6u.

Учет значений полей в окрестности \vec{x} на 2-3 порядка вычислительно сложнее.

Способы оценки прогнозов

Смещение:
$$BIAS = \frac{1}{N} \sum_{j=1}^{N} T(t,\tau) - T_{fact}(t+\tau)$$

Средняя абсолютная ошибка:
$$ABS = \frac{1}{N} \sum_{j=1}^{N} \left| T(t,\tau) - T_{fact}(t+\tau) \right|$$

Оправдываемость (для температуры):
$$U = \frac{100\%}{N} \sum_{j=1}^{N} I\{|T(t,\tau) - T_{fact}(t+\tau)| \le 3^{O}C\}$$

При оценке прогнозов порывов ветра:

	Наблюд.	Не набл.
Прогнозировалось	a	b
Не прогнозировалось	c	d

Предупрежденность
$$P = 100\% \frac{a}{a+c}$$

Оправдываемость
$$U = 100\% \frac{a}{a+b+c}$$

_ Коэфф. ложных тревог $kLT = \frac{b}{a+c}$

Критерий Багрова - Хайдке
$$BX = \frac{ad - bc}{(a+b)(b+d) + (a+c)(c+d)}$$

Критерий Гильберта

$$ETS = 100\% \frac{ad - bc}{(b+c)N + ad - bc}$$

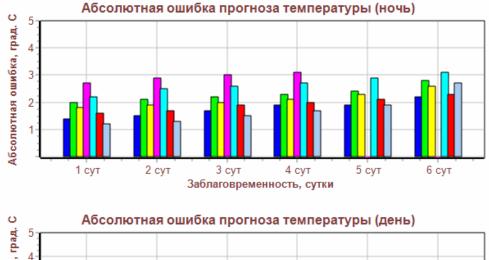
Оправдываемость осадков оценивалась согласно Наставлению 2019г

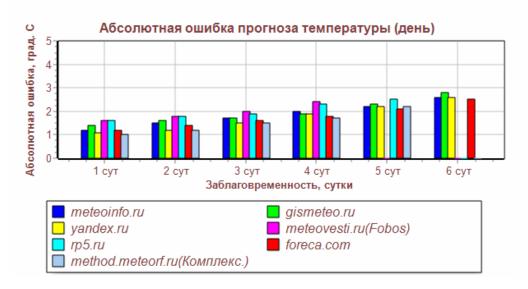
Показатели успешности прогнозов T_{min} , T_{max} и кол-ва осадков, составленных в УГМС (КП-68) и в Гидрометцентре, по административным центрам субъектов РФ за октябрь 2019г.

206505		Температура			Осадки			
Заблаг.	Метод прогноза		NN	BIAS	ABS	<i>U</i> , %	<i>U-U</i> _{компл} , %	<i>U</i> , %
сутки	УГМС			-0,1	1,37	92	-3	86
	РЭП	Ночь	2533	0,1	1,20	94	-1	
×	комплекс.			-0,1	1,13	95		87
- O	УГМС			-0,3	1,42	91	-4	84
-	РЭП	День	2531	-0,1	1,30	92	-3	
	комплекс.			0,1	1,07	95		86
	УГМС			0,0	1,49	89	-5	84
Σ	РЭП	Ночь	2255	0,1	1,31	92	-2	
сутки	комплекс.			-0,1	1,23	94		87
Φ	УГМС			-0,3	1,59	87	-6	82
2-е	РЭП	День	2252	-0,1	1,50	88	-5	
	комплекс.			0,1	1,27	93		84
	УГМС			0,0	1,67	86	-5	83
3-и сутки	РЭП	Ночь	2237	0,1	1,47	90	-1	
	комплекс.			-0,1	1,41	91		83
	УГМС			-0,3	1,84	81	-7	81
	РЭП	День	2237	-0,1	1,73	85	-3	
	комплекс.			0,0	1,52	88		82

Сравнение прогнозов T_{min} , T_{max} на различных сайтах за Октябрь 2019

Сравнительная оценка прогнозов температуры воздуха, опубликованных на различных ИНТЕРНЕТ-сайтах по Европейской территории России (33 города*) Период осреднения: 01.10.2019 - 31.10.2019


Абсолютная ошибка прогноза температуры (ночь)


Абсолютная ошибка прогноза температуры (ночь)

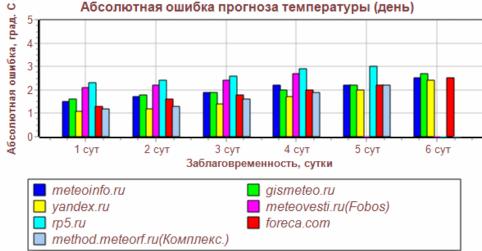
Абсолютная ошибка прогноза температуры (ночь)

6 сут

5 сут

3 сут

Заблаговременность, сутки

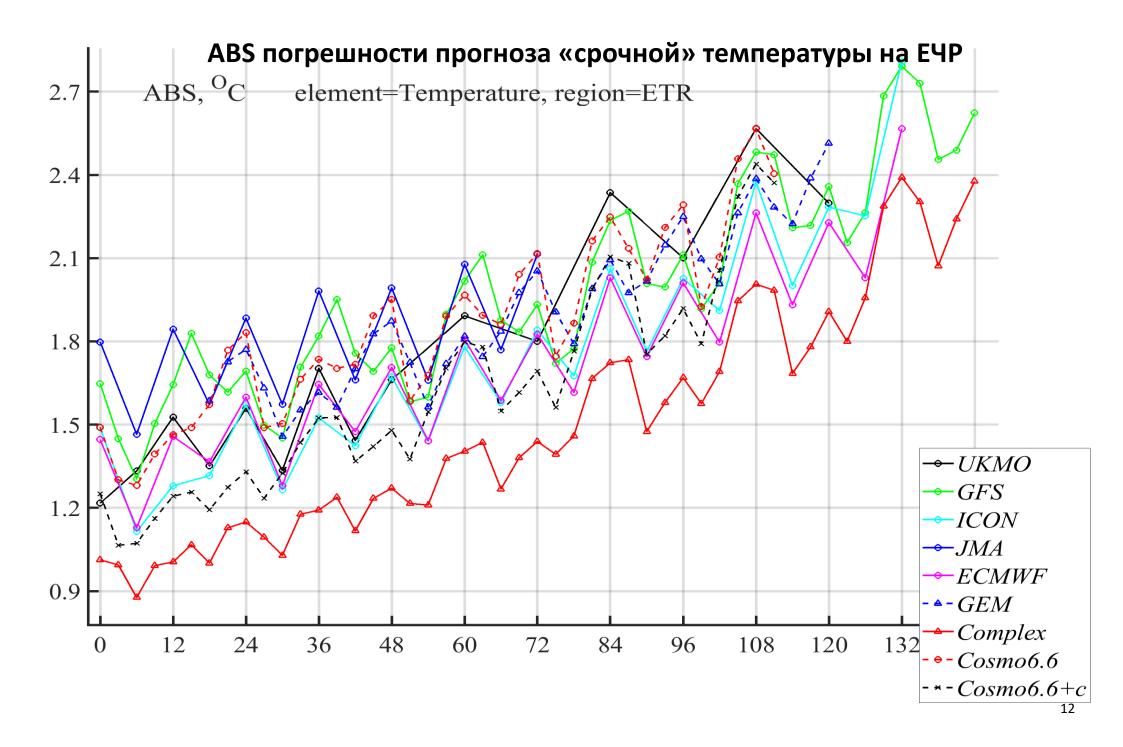

4 сут

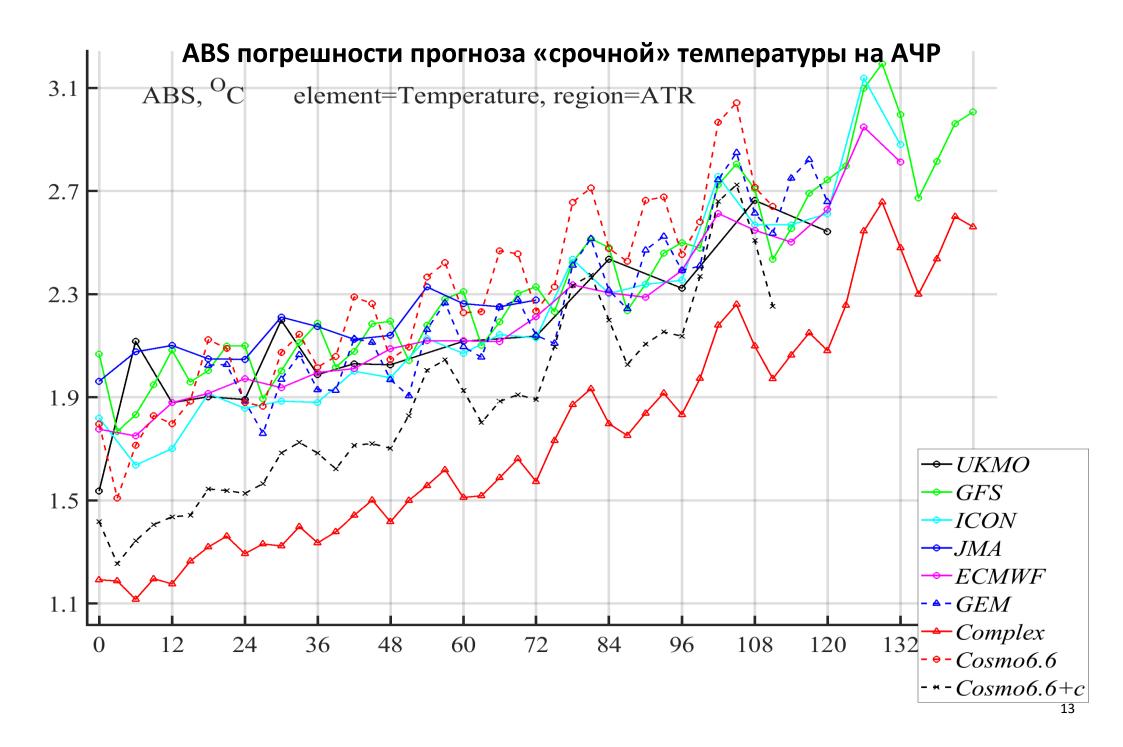
2 сут

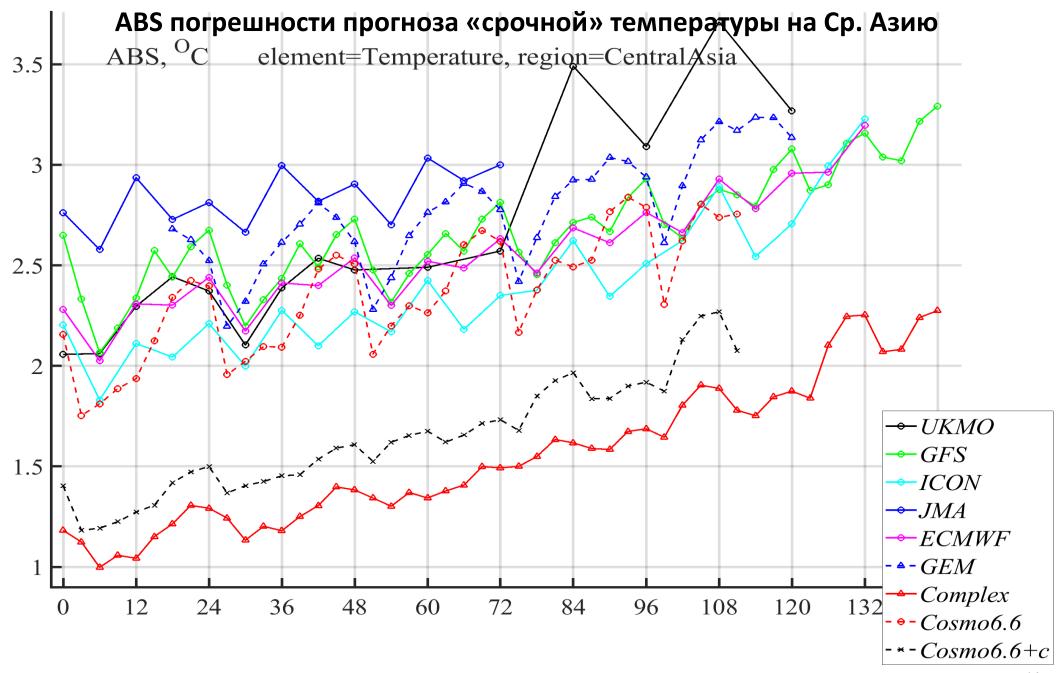
1 сут

S

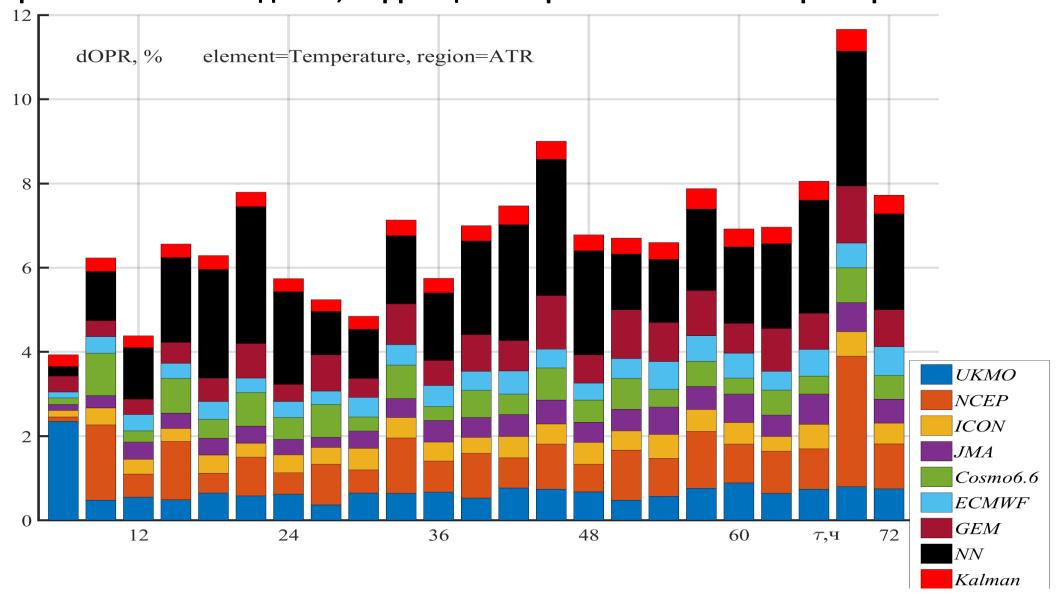
Абсолютная ошибка, град.

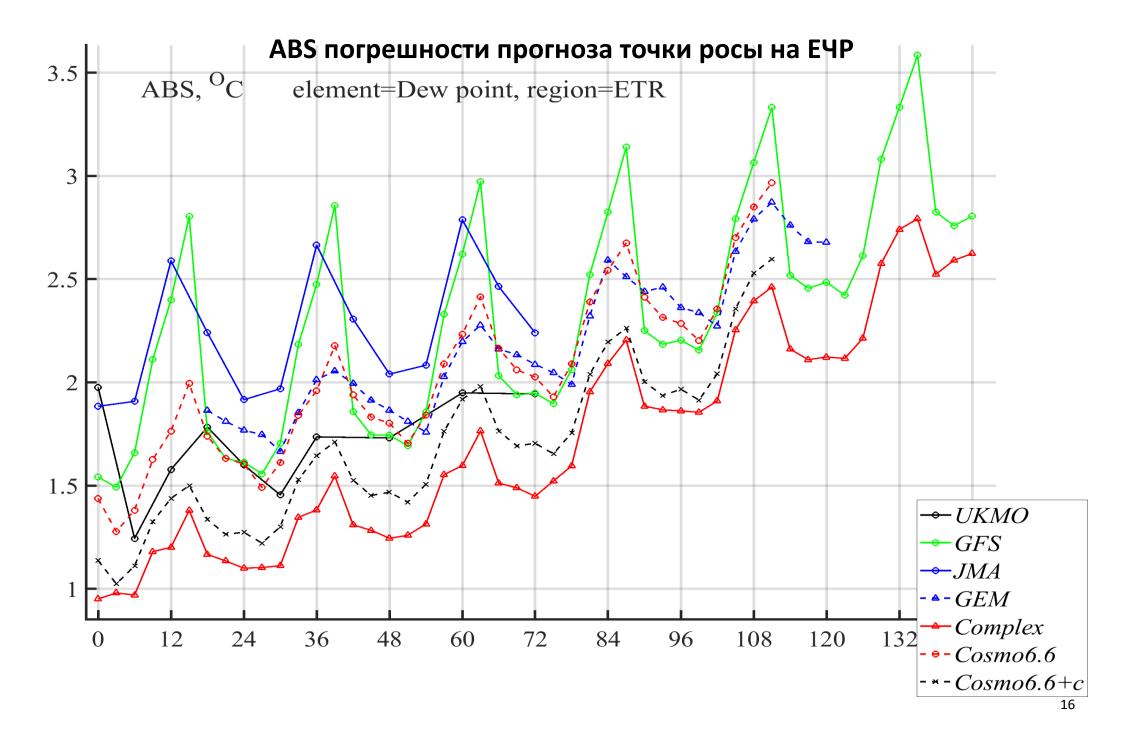

Сравнение успешности прогнозов порывов ветра (>= 18 м/с) на 12ч ВСВ за Октябрь 2019 в Европейской части России

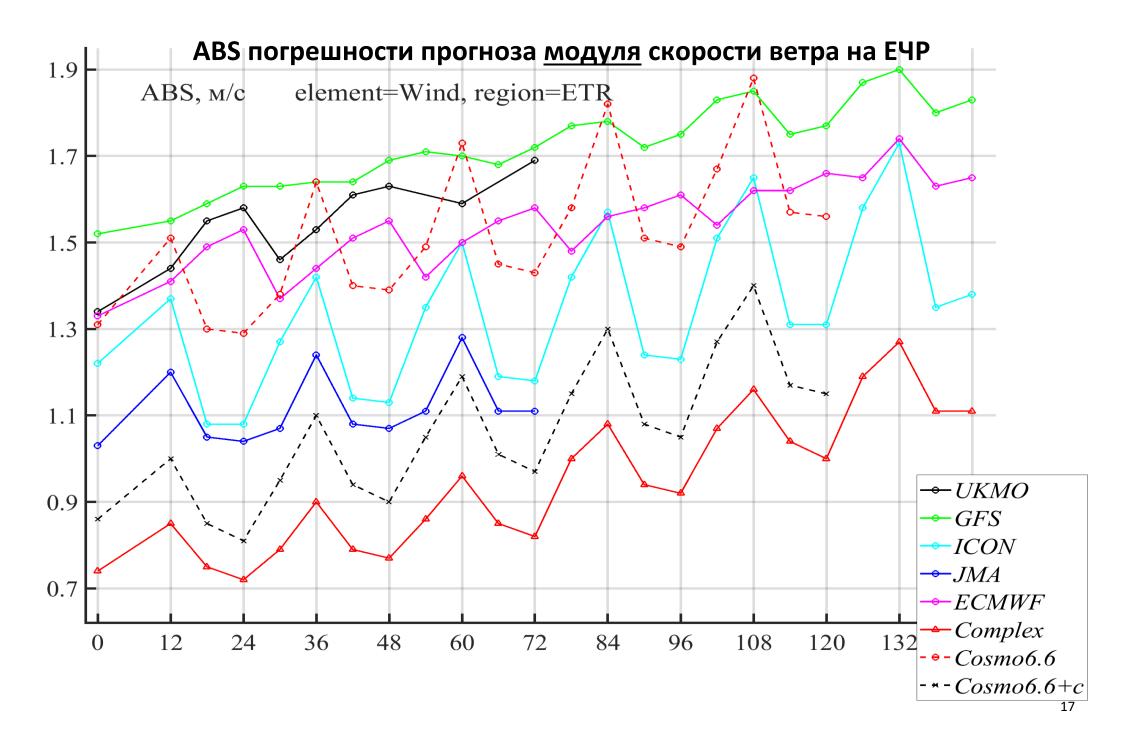

			U	P	kLT	BX	ETS	Модель
48	58	106						
148	23617	23765	19	24	0.30	0.31	0.19	GFS
196	23675	23871						
75	52	127						
110	20310	20420	32	41	0.28	0.48	0.31	COSMO-2.2
185	20362	20547						
77	63	140						
119	21302	21421	30	39	0.32	0.45	0.29	COSMO-6.6
196	21365	21561						
63	46	109						
133	23629	23762	26	32	0.23	0.41	0.26	ICON
196	23675	23871						
128	166	294						
66	22590	22656	36	66	0.86	0.52	0.35	Complex
194	22756	22950						

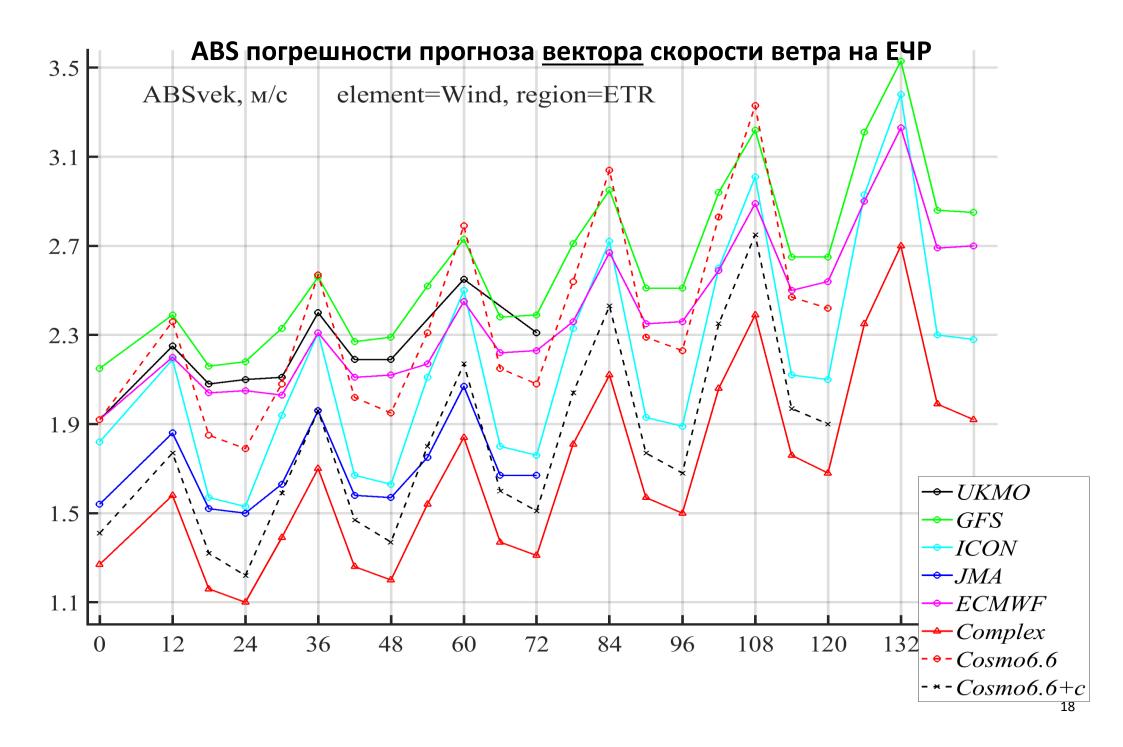

Сравнительные оценки за период с 1 мая по 30 сентября 2019г

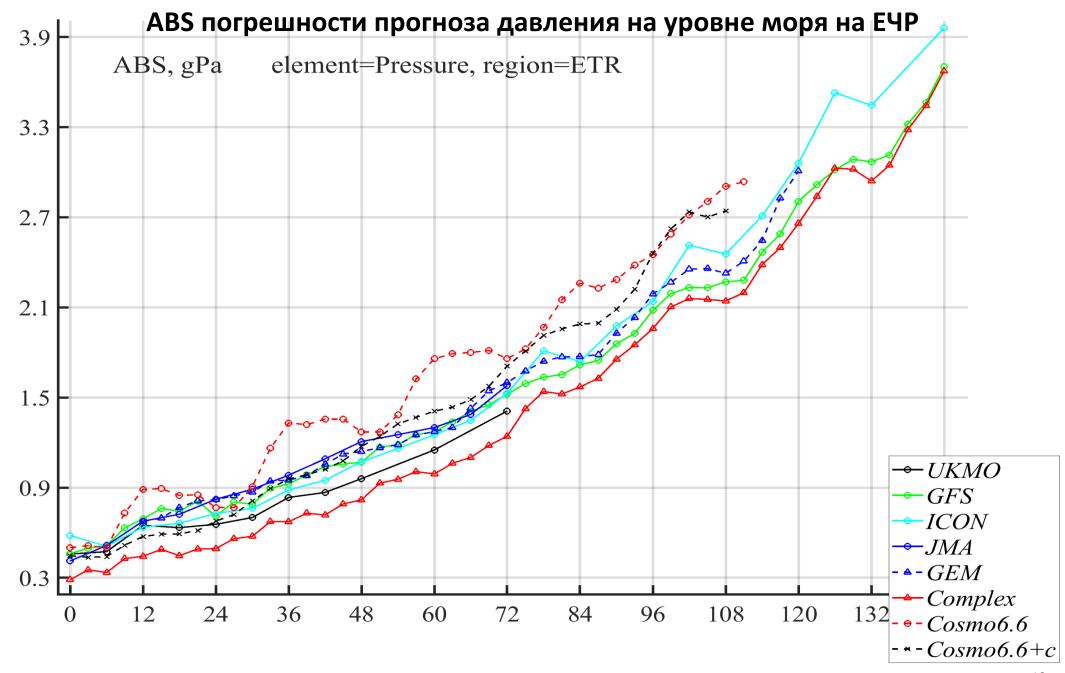
Далее приведены сравнительные оценки прогнозов в зависимости от заблаговременности за период по следующим территориям:


- 1. Европейская часть России (ЕЧР): по 777 станциям в области 43-71 с.ш., 27-62 в.д.
- Азиатская часть России (АЧР):
 по 762 станциям в области 50-65 с.ш., 62-180 в.д.
- 3. Территория Средней Азии (TCA): по 536 станциям в области 36-56 с.ш., 52-88 в.д.








Насколько уменьшается оправдываемость U прогноза температуры T на АЧР при исключении моделей, коррекции нейронными сетями и фильтра Калмана

Сайт комплексного прогноза погоды по 303 пунктам России и Беларуси:

http://method.meteorf.ru/ansambl/ansambl.html

Сайт комплексного прогноза погоды по 91 пункту Средней Азии:

http://swfdp-ca.meteoinfo.ru/prognozy/mmforecasts

- 1. Багров А.Н. Быков Ф.Л. Гордин В.А. *Комплексный прогноз приземных метеоэлементов*. «Метеорология и гидрология», 2014, № 5, с. 5—16.
- 2. Багров А.Н. Быков Ф.Л. Гордин В.А. *Схема оперативного краткосрочного комплексного прогноза ветра*. «Метеорология и гидрология», 2018, №7, с.19-26.
- 3. Багров А.Н. Быков Ф.Л. Гордин В.А. *Схема оперативного краткосрочного комплексного прогноза приземной температуры воздуха и влажности*. «Метеорология и гидрология», 2018, №8, с.5-18.
- 4. Быков Ф.Л. Статистическая коррекция прогнозов погоды по модели COSMO с помощью нейронных сетей. Принята к публикации в журнале «Метеорология и гидрология»

• Работа Ф.Л.Быкова и В.А.Гордина была частично поддержана грантом №18-05-0011 в рамках программы «Научный фонд Национального исследовательского университета «Высшая школа экономики» (НИУ ВШЭ)» в 2018 — 2019 гг. и в рамках государственной поддержки ведущих университетов Российской Федерации «5-100».

Спасибо за внимание