Эллиптические уравнения с разрывным коэффициентом. Компактная разностная схема для сложной границы сред.

Гордин В.А. Шадрин Д.А.

НИУ ВШЭ & Гидрометцентр РФ, Москва, vagordin@mail.ru, shadrin.dmitry2010@yandex.ru

Стационарные решения различных процессов (диффузии, теплопроводности, волновых) описываются уравнениями Пуассона или Гельмгольца

$$-div(\operatorname{\theta}\operatorname{grad}(u)) = f(\vec{x}), \quad \vec{x} \in G, \tag{1}$$

$$-div(\Im grad(u)) + k^{2}u = f(\vec{x}).$$
⁽²⁾

В некоторых случаях среда неоднородна, причем ее свойства меняются скачком. Разделим область G на две однородные подобласти линией стыка Γ. В технических приложениях важен случай, при котором Γ – не является гладкой (есть углы), см Рис 1. Модельный пример: подобласти - концентрические равнобедренные треугольники. В уравнениях (1), (2) коэффициент \mathcal{G} - кусочно-постоянная функция, зависящая от среды (во внутреннем треугольнике принимает значение \mathcal{G}_+ , во внешнем - \mathcal{G}_-).

На внешней границе граничные условия Дирихле, на линии Г - стыковочные:

 $[u] = 0, \qquad (3a) \qquad [\mathscr{D}_n u] = 0 \qquad (3b).$

Здесь [] - амплитуда скачка на линии Г, $\partial_n u$ - производная по нормали к линии Γ .

Аппроксимация. Использовалась компактная разностная схема 4-го порядка на треугольной сетке. Линии сетки параллельны сторонам треугольников. Для каждой точки сетки составляется уравнение вида:

$$\sum_{i} k_{i} u_{i} = \sum_{j} m_{j} f_{j} \tag{4}$$

 u_i - значения неизвестной функции в *i*-й точке шаблона вокруг точки, f_j - правой части. Коэффициенты $< k_i, m_j >$ для каждой точки сетки определяем из условия точности (4) на выбранных парах тестовых функций: $< u_{test,1}, f_{test,1} >, ..., < u_{test,n}, f_{test,n} >$, где: $f_{test,d} = L[u_{test,d}]$. Получаем *n* однородных линейных уравнений на *p* неизвестных (*p* – сумма чисел коэффициентов для решения и для правой части). Выбираем набор из n=p-1 тестовой функции, чтобы после добавления условия нормировки ($k_1 = 1$) получилась система из p уравнений. После составления проверяем хорошую обусловленность СЛАУ.

Принцип подбора тестовых функций следующий: в окрестности точек (x_0, y_0) далеких от линии стыка предполагается, что решение дифференциального уравнения и разлагается в ряд Тейлора по двум переменным до четвертой степени: $u = \sum_{i+j \le 4} a_{ij} (x - x_0)^i (y - y_0)^j + o(r^4)$; *r*-расстояние от (x_0, y_0) до

(x, y). Погрешность $o(N^{-4})$, где N – число отрезков на основании большого треугольника.

Пример шаблона и тестовых функций в точках, далеких от стыка сред.

Шаблон на рис (2) симметричен относительно вертикали и горизонтали, $k_{ij} = k_{-ij}$, $m_{ij} = m_{-ij}$, $k_{ij} = k_{i-j}$ и $m_{ij} = m_{i-j}$. Независимых коэффициентов, у которых оба индекса неотрицательны, 8 штук.

Выбор тестовых функций, на которых компактная схема должна иметь 4 порядок точности, определяется из диаграммы Ньютона.

Для точек на линии стыка *Г* аппроксимируем не уравнение, а стыковочные условия (3). Искомая функция *и* терпит излом. Разложение Тейлора существует с каждой стороны от линии излома:

	$\int \sum a_{ij}(n-n_0)^i(s-s_0)^j + o(r^4)$ внутри малого треугольника	\vec{s} направлен по касательной к
<i>u</i> =	$\begin{cases} \sum_{i+j \leq 4}^{i+j \leq 4} b_{ij}(n-n_0)^i(s-s_0)^j + o(r^4) \end{cases}$ снаружи от малого треугольника	линии стыка Γ , \vec{n} - по нормали

Из (3а) уравнения при всех $j: a_{0j} = b_{0j}$. Из (3б) уравнения $\mathcal{P}_+ a_{1j} = \mathcal{P}_- b_{1j}$. 20 тестовых функций *и* (компоненту *f* получаем, применяя оператор *L*), для обеспечения 4-го порядка:

1	S	s^2	<i>s</i> ³	<i>s</i> ⁴	$\mathcal{P}_{\pm} n$	$\Theta_{\pm} ns$	$ \vartheta_{\pm} ns^2 $	$\Theta_{\pm} ns^3$
---	---	-------	-----------------------	-----------------------	-----------------------	-------------------	--------------------------	---------------------

n^2	n^2s	n^2s^2	n^3	n^3s	n^4
$sign(n)n^2$	$sign(n) n^2 s$	$sign(n)n^2s^2$	$sign(n)n^3$	$sign(n)n^3s$	$sign(n)n^4$

В точках шаблона, попавших непосредственно на линию Γ , правая часть f не определена, поэтому полагаем там коэффициенты m_i в компактной схеме (4) нулевыми.

В точках сетки на стыке (желтые) коэффициенты $m_j = 0$. Остальные веса находим, решая СЛАУ.

Рис. 5 Диаграмма Ньютона для тестовых функций для шаблона с рис 4 вида: n^βs^α. Синие точки обозначают мономы, которые входят и с множителем sign(n), и без него. Для аппроксимации граничных условий в углах Γ решение раскладывается в ряд по обобщенным собственным функциям. Обобщенной собственной функцией дифференциального оператора L назовем функцию f, такую, что:

$$L[Y] = \begin{cases} \mu \mathcal{P}_{+} Y \text{ внутри малого треугольника} \\ \mu \mathcal{P}_{-} Y \text{ вне малого треугольника} \end{cases}$$
(6)

Они находятся методом Фурье: $Y(r, \varphi) = A(\varphi)B(r)$, где φ и r – угол и радиус в полярной системе координат относительно угла (излома линии Γ), в котором происходит аппроксимация. Подставляя Y в (6), получаем систему обыкновенных диффуров для функций A и B:

$$\frac{\partial}{\partial \varphi} \left(\mathcal{G}(\varphi) \frac{\partial A}{\partial \varphi} \right) = -\mathcal{G}(\varphi) \lambda A \quad , \tag{7}$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}B\right) - B\frac{\lambda}{r^2} + \mu B = 0.$$
(8)

Решая эту систему, получаем, что

$$A(\varphi) = \begin{cases} C_{1+} \sin(\sqrt{\lambda}\varphi) + C_{2+} \cos(\sqrt{\lambda}\varphi) &\Leftarrow \varphi \in [0,\alpha] \\ C_{1-} \sin(\sqrt{\lambda}\varphi) + C_{2-} \cos(\sqrt{\lambda}\varphi), &\Leftarrow \varphi \in [\alpha - 2\pi, 0] \end{cases}$$
(9)
$$B(r) = C_1 J_s(\sqrt{\mu}r), \text{где } \mathbf{J} - \phi \text{ункция Бесселя первого рода.} \end{cases}$$

Индекс функции Бесселя $s = \sqrt{\lambda}$ определяется из стыковочных условий (3):

$$det \begin{pmatrix} \sqrt{\frac{g_{-}}{g_{+}}} \sin\sqrt{\frac{\lambda}{g_{+}}}\alpha + \sin\sqrt{\frac{\lambda}{g_{-}}}(2\pi - \alpha) & \cos\sqrt{\frac{\lambda}{g_{+}}}\alpha - \cos\sqrt{\frac{\lambda}{g_{-}}}(2\pi - \alpha) \\ \sqrt{g_{-}}\cos\sqrt{\frac{\lambda}{g_{+}}}\alpha - \sqrt{g_{-}}\cos\sqrt{\frac{\lambda}{g_{-}}}(2\pi - \alpha) & -\sqrt{g_{+}}\sin\sqrt{\frac{\lambda}{g_{+}}}\alpha - \sqrt{g_{-}}\sin\sqrt{\frac{\lambda}{g_{-}}}(2\pi - \alpha) \end{pmatrix} = 0$$
(10)

Рис. 6. Шаблон для левого угла при основании границы сред. На рисунке радиус отсчитывается от точки, обведенной в зеленый квадрат, угол отсчитывается от нижнего участка стыка

Тестовые функции для этого шаблона записаны в полярной системе координат (r, ϕ) :

1,
$$r^2$$
, r^4 , $A_{s_1}r^{s_1}$, $A_{s_1}r^{s_1+2}$, $A_{s_2}r^{s_2}$, $A_{s_2}r^{s_2+2}$, $A_{s_3}r^{s_3}$, $A_{s_3}r^{s_3+2}$, $A_{s_4}r^{s_4}$, $A_{s_4}r^{s_4+2}$, $A_{s_5}r^{s_5}$, $A_{s_6}r^{s_6}$, $A_{s_7}r^{s_7}$, $A_{s_8}r^{s_8}$.
Функции $A_s(\varphi)$ определены по формуле (9).

Функции Бесселя, индекс которых определяется из дисперсионных соотношений были заменены на

степени *r*, так как функции Бесселя раскладываются в близи 0 в степенной ряд: $J_s(r) = \sum_{i=0}^{\infty} c_i r^{s+2i}$

Численные эксперименты

Рассчитывалось решение U_{exact} для заданной правой части F на мелкой сетке N' = 800. Для $N_i = 400, 200, 100, 50$ вычислялось решение U_i . Погрешность: $\|U_{exact} - U_i\|_{L1}$. Графики погрешности от N в билогарифмической шкале. Тангенс угла наклона этой прямой определяет порядок схемы.

На рис.10 результаты численных экспериментов. На внешней границе стоят граничные условия Дирихле $u|_{\partial V} = 1$. Правая часть $f \equiv 1$ на всем большом треугольнике.

Угол между линией экстремума $A_s(\phi)$ и линией Γ очень мал. \Rightarrow Нужно добавить точки около Γ .

Работа была поддержана грантом (18-05-0011) в рамках Программы «Научный фонд Национального исследовательского университета «Высшая школа экономики» (НИУ ВШЭ)» в 2016-2017 гг. с использованием средств субсидии на государственную поддержку ведущих университетов Российской Федерации в целях повышения их конкурентоспособности среди ведущих мировых научно-образовательных центров, выделенной НИУ ВШЭ.