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What is this about?

[Fomin et al., 2019]
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What is this about?

Diachronic semantic shifts?
I Word meaning ≈ word contexts [Firth, 1957]

I Changes in contexts ≈ changes in meaning
I a.k.a. semantic shifts.

I Cultural changes influence the contexts
I Studies in automatic tracing of semantic shifts require publicly

available datasets and strong baselines.
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SemEval-2020

Task 1: Unsupervised Lexical Semantic Change Detection
I https://competitions.codalab.org/competitions/20948

1. classification task
2. ranking task

I German, English, Swedish, Latin
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Previous work

I Hand-picking examples [Traugott and Dasher, 2001, Daniel and Dobrushina, 2016]

I Distributional approaches to diachronic semantics (surveyed in
[Kutuzov et al., 2018, Tang, 2018])

I Various algorithms of semantic shift tracing using word embeddings:
I Training models incrementally [Kim et al., 2014]
I Training models separately for each time bin:

I Aligning embedding spaces [Hamilton et al., 2016]
I Comparing distances between a given word and all others (second-rank

similarity) [Yin et al., 2018]

I Training models jointly across time bins
[Bamler and Mandt, 2017, Yao et al., 2018, Rosenfeld and Erk, 2018]
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Russian datasets

What we did?
I Dataset of short-term semantic shifts in Russian adjectives, based

on news texts
I Re-packing a dataset of long-term semantic shifts for nouns and

adjectives during the Soviet period
I Experimenting with well-established baseline algorithms for

semantic shift detection, testing them on the datasets

NB: antonyms pose real problems for distributional models!
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Russian datasets

‘Micro’ dataset
I 2000 — 2014: 15 years of Russian news texts
I 20 adjectives for each year pair (2000-2001, 2001-2002, etc...)
I selected randomly, biased towards the words chosen by the Global

Anchors method (more details further)
I 14 year pairs × 20 words = 280 entries
I Manual annotation by 3 annotators

I 3 class labels:

Label Meaning

0 no semantic shift
1 somewhat shifted
2 significantly shifted
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Russian datasets

Socio-cultural semantic shifts in adjectives in 2014, as compared to
2013 (excerpts from the ‘Micro’ dataset)

Class Adjective English translation

2 крымский ‘Crimean’
2 приёмный ‘1) adopted; 2) something receiving’
2 луганский ‘of Luhansk ’
1 правый ‘1) right; 2) right-wing’
1 кипрский ‘Cyprian, Cypriot ’
0 серый ‘gray ’
0 балетный ‘of ballet ’
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Russian datasets

Mean values of annotators’ scores, ‘Micro’ dataset
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Russian datasets

‘Macro’ dataset
I Originally from [Kutuzov and Kuzmenko, 2018]

I We publish it in a machine-readable form.
I Changes from Pre-Soviet through Soviet times

I

Nouns Adjectives

Target 38 5
Filler 152 20

I 2 class labels (no shift / shift)
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Russian datasets

word label word label

отделение 1 тюрьма 0
секция 1 влияние 0
богадельня 1 весна 0
особа 1 уверенность 0
уклон 1 красавица 0
молодец 1 жених 0
передовой 1 заказ 0

Table: Example entries from the ‘Macro’ dataset
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Russian datasets

‘Micro’ corpus
I Newspaper subcorpus of RNC + lenta.ru

I News texts produced in 2000,
I News texts produced in 2001,
I ...,
I News texts produced in 2014,

‘Macro’ corpus
I Main body of RNC:

I Texts produced before 1917 (75 millions tokens),
I Texts produced in 1918—1990 (96 millions tokens),
I Texts produced after 1991 (85 millions tokens)
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Russian datasets

’Micro’ corpora sizes per year
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Word embeddings

Distributional models for baselines evaluation
I ‘Static’ models:

I Model trained on time bin tb0,
I Model trained on time bin tb1,
I ...
I Model trained on time bin tbn

I ‘Incremental’ models
I Model trained on time bin tb0,
I Model trained on time bin tb1, initialized with tb0 weights,
I ...
I Model trained on time bin tbn, initialized with tbn−1 weights.

word2vec CBOW [Mikolov et al., 2013], context window = 5, vector size 300

14



Contents

1 What is this about?

2 Previous work

3 Russian datasets

4 Word embeddings

5 Baseline results
Local methods
Global methods
Results

6 Recent ideas

14



Baseline results

Experimental workflow
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Conceptual types of methods

Local methods for semantic shift detection
Comparing words’ nearest neigbors:

I Jaccard distance [Jaccard, 1901]

I Kendall’s τ [Kendall, 1948]

Global methods for semantic shift detection
Comparing overall structure of semantic spaces:

I Procrustes alignment [Hamilton et al., 2016]

I Global Anchors [Yin et al., 2018]

16



Local methods

Jaccard distance
[Jaccard, 1901]

J(X ,Y ) =
|X ∩ Y |
|X ∪ Y |

(1)

Nearest neighbors for ‘вежливый’:
X = приветливый, общительный, уравновешенный, отзывчивый,
добродушный
Y = камуфляж, неравнодушный, порядочный, здравомыслящий,
незнакомый

Can you guess the years for X and Y ?

17



Local methods

Kendall’s τ
Takes into account the ranking of neighbors [Kendall, 1948]

2
n(n − 1)

∑
i<j

sgn(xi − xj) sgn(yi − yj) (2)

Nearest neighbors for ‘луганский’ (x = 2013, y = 2014):
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Global methods

Orthogonal Procrustes Analysis

Given embedding matrices A and B, find an orthogonal matrix R that
maps A to B [Hamilton et al., 2016].

BT A = M

M = UΣV T

R = UV T

Then simple cosine between wordA and wordB is calculated

19



Global methods

Global Anchors
[Yin et al., 2018]

Semantic shift of word w from year x to year y :

similaritiesx = (x1, ..., xn)

similaritiesy = (y1, ..., yn)

I xi and yi are cosine similarities between the word w and the ith word
in the intersection of x and y vocabularies.

I We compare global positions of w in the semantic space.
I Semantic similarity between different time periods =

cos(similaritiesx , similaritiesy )

20



Baseline results

‘Macro’ dataset

Models Glob.Anchors Procrustes Kendall Jaccard combined

Static 0.675 0.767 0.504 0.646 0.722
Incremental 0.598 0.681 0.475 0.576 0.617

Random choice

≈ 0.5

I Global methods work better
I Local methods are still applicable
I Procrustes analysis is clearly the best
I Incremental models are worse than static.

21



Baseline results

‘Micro’ dataset

Models Glob.Anchors Procrustes Kendall Jaccard combined

Static 0.453 0.468 0.136 0.301 0.503
Incremental 0.462 0.459 0.194 0.326 0.442

Random choice

≈ 0.33

I Global methods clearly win on granular timespans
I Local methods sometimes worse than random
I Combining methods is a good idea
I Still no (significant) profit from incremental models
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Baseline results

Please re-use:
I Two manually annotated datasets with diachronic semantic shifts for

Russian:
I A short-term ‘Micro’ dataset, scale = years (adjectives only)
I A long-term ‘Macro’ dataset, scale = centuries

I Datasets and baseline implementations:

https://github.com/wadimiusz/diachrony_for_russian

23
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Recent ideas

Temporal referencing
I Time labels as tags [Dubossarsky et al., 2019]

I Each target word is replaced with a time-specific token
I In the 1920s corpus: computer → computer1920

I If it is a context word, it remains unchanged.
I One vector space is learned.
I No post-hoc alignment necessary.
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Recent ideas

What else can be done?
I Semantic shifts are related to word senses

I What about contextualized embeddings?
I ELMo [Peters et al., 2018]
I BERT [Devlin et al., 2019]

[Giulianelli, 2019] tries to compare clusters of BERT embeddings for word
occurrences across the COHA corpus. We did it with ELMo top layer
representations.
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Recent ideas

ELMo representations of each occurrence of the word ‘cell’ in 4 decades:
actual semantic shift. Diversity significantly increased in 2000s. 26



Recent ideas

Prison cell
1. ‘...the chief turnkey on duty, for over ten years, but you wouldn’t

have known it from the way he processed me for the cells.’
2. ‘It also happened to me in a jail cell, Peb.’
3. ‘If she had been writing to somebody in the darkness of her prison

cell, what had she done with the message?’

Biological cell

1. ‘The sexual cells of Pyronema show this in ascomycetes.’
2. ‘...how a cell decides whether it becomes a muscle cell or...’
3. ‘If those cells are found to be cancerous after being sent to a lab...’

27



Recent ideas

Cell phone (2000s only)
1. ‘...service providers fulfill that objective, and what about the other

health and safety risks... that the growing use of cell phones raise?’
2. ‘Gilles swatted Adriana on the upper arm... nearly dislodging the cell

phone she had balanced between her chin and her left shoulder.’
3. ‘You still have the same cell number.’

28



Recent ideas

But...

ELMo representations of each occurrence of the word ‘faith’ in 2 decades:
diversity also significantly increased. WTF?
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Recent ideas

Sentences from the new cluster:
1. ‘Maybe we could - - 64 - &nbsp; FAITH (waving down a cab) Thank

you, but this is a personal matter.’
2. ‘&nbsp; FAITH (nodding) Like a detective.’
3. ‘Perhaps you misunderstood ? &nbsp; FAITH (trying not to panic)

Are you absolutely sure he’s gone? Maybe you made a mistake.’

I Script of the 1994 movie ‘Only You’, where ‘FAITH’ is one of the
main characters!

I Often accompanied by parentheses and non-breaking space
(&nbsp).

I Contextualized representations heavily influenced by syntax and
punctuation.

I False flag!
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Recent ideas

Contextualized representations in semantic shifts detection
I Not entirely straightforward.

I Empirical results still do not outperform previous approaches (yet).
I Can we somehow filter out syntactic information?

I learn a weighted function of layers for this task?
I Conceptual problem of determining the number of clusters.
I How to align temporal models?
I ...and lots of other interesting topics to research :-)

Thanks! Questions?
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