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Outline
- Knowledge Graphs

- Knowledge Graph Embeddings (KGE) : ML + Logic

- Question Answering over KGs (KGQA)

- Conversational AI 
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Background
We build conversational AI platforms
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Background
We build conversational AI platforms

Powered by knowledge graphs
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Background
We build conversational AI platforms

Powered by knowledge graphs

Obtained by integrating heterogeneous data
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Knowledge Graph
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Knowledge Graph - Entities
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Knowledge Graph - Relations
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Knowledge Graph (real excerpt)

9https://wikidata.metaphacts.com/
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Available Knowledge Graphs
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Open-domain: Wikidata, DBpedia

Biomed: Drugbank, SNOMED-CT, Bio2RDF

Industry 4.0: RAMI

Finance: FIBO, FRO, XBRL, FinReg

Knowledge 
Graphs

Ontologies
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Available Knowledge Graphs
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Open-domain: Wikidata, DBpedia

Biomed: Drugbank, SNOMED-CT, Bio2RDF

Industry 4.0: RAMI

Finance: FIBO, FRO, XBRL, FinReg

Enterprise Knowledge Graphs

Knowledge 
Graphs

Ontologies

Custom
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Building Knowledge Graphs
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Semantic Data Integration

Structured Sources

Knowledge Graph

https://www.draw.io/?page-id=M6FITesjWa7pPIvpxZNn&scale=auto#G10TTO8_JOKOks-Vskqnh_T0oBChbeOHV3
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Building Knowledge Graphs
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Semantic Data Integration

Structured Sources

Knowledge Graph

Information Retrieval & NLP

Unstructured Sources

Knowledge Graph

https://www.draw.io/?page-id=M6FITesjWa7pPIvpxZNn&scale=auto#G10TTO8_JOKOks-Vskqnh_T0oBChbeOHV3
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Knowledge Graphs as Tensors
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Knowledge Graphs as Tensors
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Knowledge Graphs as Tensors
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Knowledge Graphs as Tensors
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Knowledge Graph Embeddings
Goal: encode nodes so that similarity in the embedding 
space (e.g., dot product) approximates similarity in the 
original network
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Tensor 
Factorization

Translation

Convolution

Graph Neural 
Nets



Moscow NLP Seminar 16.11.2019

KGE - RESCAL
Goal - factorize a sparse 3D tensor to dense E and R
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Tensor 
Factorization

Nickel et al. A review of relational machine learning for knowledge graphs. IEEE. 2015
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KGE - Expressivity & Rules
TF can be enriched with logical rules and can learn rules
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Tensor 
Factorization

● Symmetric
● Inverse
● Anti-symmetric
● Composition

Kazemi et al. SimplE Embedding for Link Prediction in Knowledge Graphs. NIPS 2018
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KGE - Expressivity & Rules
TF can be enriched with logical rules and can learn rules
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Tensor 
Factorization

Sun et al. Rotate: Knowledge graph embedding by relational rotation in complex space. ICLR 2019
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Goal - factorize a sparse 3D tensor to dense core W, 
entities E and relations R

22

Tensor 
Factorization

Balazevic et al. TuckER: Tensor Factorization for Knowledge Graph Completion. EMNLP 2019

KGE - TuckER
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KGE - TransE
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Tensor 
Factorization

Translation

Translate entities and relations into one embedding space

Wang et al. Knowledge Graph Embedding by Translating on Hyperplanes. AAAI 2014
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KGE - TransE
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Tensor 
Factorization

Translation

LOTS of 
models

Cai et al. A Comprehensive Survey of Graph Embedding: 
Problems, Techniques and Applications. IEEE TKDE 2017
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KGE - LogicENN
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Tensor 
Factorization

Translation

Nayyeri et al. LogicENN: A Neural Based Knowledge Graphs Embedding Model with Logical Rules. arxiv:1908.07141
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Tensor 
Factorization

Translation

Sun et al. RotatE: Knowledge Graph Embedding By Relational Rotation In Complex Space. ICLR 2019

Score function:

Loss & Optimization:

Idea: 
Entities are vectors 
in complex space

Relations: rotations 
in complex space

KGE - RotatE
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KGE - Hyperbolic
Goal: embed hierarchical structures into an n-dimensional Poincaré ball.
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Tensor 
Factorization

Translation

Nickel et al. Poincaré Embeddings for Learning Hierarchical Representations. NIPS 2017
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KGE - Hyperbolic - MuRP
Goal: embed hierarchical structures into an n-dimensional Poincaré ball.
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Tensor 
Factorization

Translation

Balazevic et al. Multi-relational Poincaré Graph Embeddings. NeurIPS 2019
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KGE - Hyperbolic - MuRP
Goal: embed hierarchical structures into an n-dimensional Poincaré ball.
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Tensor 
Factorization

Translation

Balazevic et al. Multi-relational Poincaré Graph Embeddings. NeurIPS 2019
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KGE - ConvE
Goal: CNNs for predicting a probability of the object
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Tensor 
Factorization

Translation

Convolution

Minervini et al. Convolutional 2D Knowledge Graph Embeddings. AAAI 2018
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KGE - Graph Networks 
Goal: leverage topological graph characteristics
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Tensor 
Factorization

Translation

Convolution

Graph Neural 
Nets

Veličković et al. Graph Attention Networks. ICLR 2018
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KGE - Graph Networks 
Goal: leverage topological graph characteristics
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Tensor 
Factorization

Translation

Convolution

Graph Neural 
Nets

Nathani et al. Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs. ACL 2019
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How many Marvel movies was Robert Downey Jr. 
casted in? 

33

Question Answering over KGs 
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How many Marvel movies was Robert Downey Jr. 
casted in? 

SELECT COUNT(?uri) WHERE {
?uri dbp:studio dbr:Marvel_Studios.
?uri dbo:starring dbr:Robert_Downey_Jr

} 

34

All 
marvel 
movies KGQA
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How many Marvel movies was Robert Downey Jr. 
casted in? 

SELECT COUNT(?uri) WHERE {
?uri dbp:studio dbr:Marvel_Studios.
?uri dbo:starring dbr:Robert_Downey_Jr

} 
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All 
marvel 
movies

Every 
thing 

starring 
RDJ

KGQA
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How many Marvel movies was Robert Downey Jr. 
casted in? 

SELECT COUNT(?uri) WHERE {
?uri dbp:studio dbr:Marvel_Studios.
?uri dbo:starring dbr:Robert_Downey_Jr

} 
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All 
marvel 
movies

Every 
thing 

starring 
RDJ

Find the 
intersection

KGQA
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How many Marvel movies was Robert Downey Jr. 
casted in? 

SELECT COUNT(?uri) WHERE {
?uri dbp:studio dbr:Marvel_Studios.
?uri dbo:starring dbr:Robert_Downey_Jr

} 
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All 
marvel 
movies

Every 
thing 

starring 
RDJ

Find the 
intersection

Count the 
entities 
left

KGQA
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Who is the CEO of Apple?

Apple belongs to which genus?

Downey played Iron Man in which year?

Who is the alter ego of Iron man?

movie character

comic character

Entity Linking
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Name all the movies in which Robert Downey Jr Acted?

Which movies have RDJ?

Flicks where I can see Robert DJ?

Find me all the films casting Rober Downey Jr ?

List all the movies starring Robert Downey Junior?

RDJ has acted in which movies?

dbo:starring

Relation Linking
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Name all the movies in which Robert Downey Jr Acted?

Which movies have RDJ?

Flicks where I can see Robert DJ?

Find me all the films casting Rober Downey Jr ?

List all the movies starring Robert Downey Junior?

RDJ has acted in which movies?

Relation Linking - Implicit Predicates
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LC-QuAD 2.0

Dubey et al. LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia. ISWC 2019
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Knowledge Graphs from Text

Fan et al. Using Local Knowledge Graph Construction to Scale Seq2Seq Models to Multi-Document Inputs. EMNLP 2019
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Knowledge Graphs from Text

Fan et al. Using Local Knowledge Graph Construction to Scale Seq2Seq Models to Multi-Document Inputs. EMNLP 2019
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Knowledge Graphs from Text

Fan et al. Using Local Knowledge Graph Construction to Scale Seq2Seq Models to Multi-Document Inputs. EMNLP 2019
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Raw text-based dialogue systems
● Mostly sequence to sequence over textual inputs

● Some basic causal NL inference (s1 follows s2)

● Effective on simple utterances over short paragraphs
○ No memory (with exceptions)
○ No format and justifiable knowledge

My name is John

Hello, John!

I left my keys in the kitchen. 
Can you find them?

In the kitchen

<Long input>

<excerpt from the 
long input>

45
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Knowledge-driven 
in-car dialogue 
system (EN/DE)

Full DBpedia 
2019 (wikidata 
branch)
  > 50M entities
  > 4B triples

KGs & Conversational AI
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KGs & Conversational AI

Moon et al. OpenDialKG: Explainable Conversational Reasoning with Attention-based Walks over Knowledge Graphs. ACL 2019

Challenge: incorporate 
graph-based reasoning 
into dialogue systems 
over Knowledge Graphs
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KGs & Conversational AI

Moon et al. OpenDialKG: Explainable Conversational Reasoning with Attention-based Walks over Knowledge Graphs. ACL 2019
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KGs & Conversational AI

Moon et al. OpenDialKG: Explainable Conversational Reasoning with Attention-based Walks over Knowledge Graphs. ACL 2019

Complex Sequential 
Question Answering
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Shen et al. Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base. EMNLP 2019

Complex Sequential Question Answering
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Shen et al. Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base. EMNLP 2019

Complex Sequential Question Answering
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So why you need graphs?
Implicit or explicit constraints on produced answersHow many children 

does Berlin Hbf have?

52
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So why you need graphs?
Implicit or explicit constraints on produced answers

- reduce candidates space
- help to fight the mushroom effect
- ontologies help

How many children 
does Berlin Hbf have?

Train stations 
don’t have kids

53
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So why you need graphs?
Implicit or explicit constraints on produced answers

- reduce candidates space
- help to fight the mushroom effect
- ontologies help

Complex QA via (sub)graphs aggregations What is the busiest 
train station in 

Germany?

How many children 
does Berlin Hbf have?

Train stations 
don’t have kids
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So why you need graphs?
Implicit or explicit constraints on produced answers

- reduce candidates space
- help to fight the mushroom effect
- ontologies help

Complex QA via (sub)graphs aggregations What is the busiest 
train station in 

Germany?
select ?station ?visits where {
 ?station wdt:P31 wd:Q18543139 . # central stations
 ?station wdt:P17 wd:Q183 . # in Germany
 ?station wdt:P1373 ?visits . # daily visits
} ORDER BY DESC(?visits) LIMIT 1 # sort

How many children 
does Berlin Hbf have?

Train stations 
don’t have kids

Hamburg Hbf
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So why you need graphs?
Graphs significantly improve reasoning 
compared to sole natural language inference

Takeaway 1
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So why you need graphs?
Graphs significantly improve reasoning 
compared to sole natural language inference

Reasoning outcomes are 
explainable and traceable

Takeaway 1

Takeaway 2
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Possible directions

KGs at scale and robust querying

58

Enriched knowledge 
representations

Self-learning and 
knowledge extraction 
from dialogues

Graph-based reasoning 
for complex QA

Commonsense reasoningNLG from graphs

mikhail.galkin@iais.fraunhofer.de 
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