Комплексный коэффициент турбулентного обмена в модели пограничного слоя атмосферы. Согласование с данными высокого разрешения

<u>Ф.Л.Быков</u>, В.А.Гордин ФГБУ «Гидрометцентр России», НИУ ВШЭ, факультет экономических наук

Москва, 2020г

Модель Аккерблома - Экмана описывает стационарное решение уравнений газовой динамики в пограничном слое атмосферы (ПСА). Учитывает турбулентность и силу Кориолиса. Пространственные масштабы: 1 км по вертикали и 100км по горизонтали:

 $\begin{cases} \frac{d}{dz} \left[k(z) \frac{du}{dz} \right] = -l \left(v - v_g \right), & \text{где } u, v - \text{искомые горизонтальные компоненты ветра в пограничном слое, } u_g, v_g - \text{ основной } \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1) & (1) & (1) & (1) & (1) \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), & (1) & (1$

 $\frac{1}{g} = \frac{1}{g} = \frac{1}$

 $k(z_0) = 0$ для некоторого $z_0 \in (0, H)$, то задача может не иметь решения.

При k(z) = const > 0 краевая задача (1) решается аналитически и угол поворота ветра в ПСА равен 45⁰.

Распределение углов поворота ветра в ПСА

Быков Ф.Л. Гордин В.А.

Обобщенная модель Аккерблома - Экмана

Модель (1) инвариантна относительно группы поворотов вокруг вертикальной оси. Будем так же рассматривать модифицированную систему

$$\begin{cases} \frac{d}{dz} \left[\gamma(z) \sin(\varphi) \frac{dv}{dz} + k(z) \frac{du}{dz} \right] = -l \left(v - v_g \right), \\ \frac{d}{dz} \left[-k(z) \frac{dv}{dz} + \gamma(z) \sin(\varphi) \frac{du}{dz} \right] = -l \left(u - u_g \right), \end{cases}$$
(2)

где $\gamma(z)$ играет роль регуляризатора, если k(z) близко к 0. Мотивировка (2): только матрицы вида $\begin{pmatrix} \gamma & -k \\ k & \gamma \end{pmatrix}$ перестановочны с группой поворотов плоскости **SO(2),** т. е. линейный дифференциальный оператор второго порядка только такого вида инвариантен относительно поворотов системы координат вокруг вертикальной оси. Задача (2) теряет решение, только если $k(z_0) = \gamma(z_0) \sin \varphi = 0$ для некоторого $z_0 \in (0, H)$. В общем положении так не бывает! Сомножитель $\sin \varphi$ был добавлен по результатам экспериментов с данными

измерений из Южного полушария

Быков Ф.Л. Гордин В.А.

Комплексная форма обобщенной модели (2)

Если обозначить $w = u + iv_{\rm H} \kappa = k - i\gamma \sin \varphi$, где $i = \sqrt{-1}$, то (2) эквивалентна

$$\frac{d}{dz}\left[\kappa(z)\frac{dw}{dz}\right] = il\left(w-w_g\right).$$
(3)

При комплексном $\kappa(z) = const$ получаем:

- 1. Характеристические значения системы $\pm \sqrt{il/\kappa}$, *Решение задачи Коши ограничено при* $z \to +\infty$ если и только если $k = 0, \gamma > 0$
- 2. Угол поворота ветра равен $\arg \sqrt{\frac{i}{\kappa}} = \frac{1}{2} \operatorname{atan} \frac{k}{\gamma \sin \varphi}$, *Средний наблюдаемый угол поворота* 10-20⁰ достигается при $\gamma \sin \varphi/k \approx 1.2 - 2.7$

Интегрирование системы по вертикали

При измерениях скорость ветра определяется дифференцированием координат зонда. Чтобы уменьшить порядок дифференцирования, проинтегрируем по вертикальной переменной систему (3) и получим:

$$\kappa(z)\frac{dw}{dz} = -\psi + c, \frac{d\psi}{dz} = il\left(w_g - w\right),\tag{4}$$

где константу $c \in \mathbb{C}$ для удобства выберем так, чтобы $\int_{0}^{u} \psi(z) dz = 0.$

По данным *N* вертикальных профилей ветра, будем искать универсальную $\kappa(z)$ как функцию, минимизирующую среднюю невязку (4):

$$L(\kappa(z),c_j) = \frac{1}{N} \sum_{j=1}^N \frac{1}{W_j} \int_0^{H_j} \left| \kappa(z) \frac{dw_j}{dz} + \psi(z) - c_j \right|^2 dz \to \min_{\kappa(z), \{c_j\}},$$
(5)

где *j* – номер профиля, $W_j = \int_0^{u_j} |\psi(z)|^2 dz$. Задача сводится к задаче квадратичного программирования. При такой нормировке получаем $\min_{c_j} L(0,c_j) = 1$. Величина $\Lambda^2 = 1 - L$ имеет смысл среднего коэффициента детерминации.

Толщина пограничного слоя

Толщину Н оцениваем, решая уравнение

$$\Theta(H) = \Theta_V(0), \tag{6}$$

где Θ – потенциальная температура и Θ_v – потенциальная виртуальная температура. Это максимальная высота, на которую водяной пар с поверхности Земли может подняться адиабатически.

Рассматриваем профили ветра в коде BUFR, удовлетворяющие условиям:

- 1. Дискретность измерений ветра 0.1м/с
- 2. Как минимум 25 измерений в слое 0-1000м
- 3. Пограничный слой более 100м. Вертикальное разрешение наших данных (~20м) не позволяет находить качественные оценки модели при более тонких слоях
- 4. Изменчивость скорости ветра в ПСА более 2.5м/с
- 5. Высота первого отсчета в профиле не более 5м

Из 234905 профилей по этим условиям отобрали 33806 профиля (14.4%)

Комплексный коэффициент турбулентного обмена

Число Ричардсона

Число Ричардсона (точнее функция) вычисляется по формуле

$$Ri(z) = \frac{g}{\Theta} \frac{\frac{\partial \Theta}{\partial z}}{\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2}.$$

(/)

Значения $Ri > Ri_c = 0.25$ соответствуют устойчивой стратификации, $Ri < Ri_c =$ неустойчивой, Ri < 0 – сильно неустойчивой (существует слой инверсии).

Расположение станций, с которых доступны данные BUFR высокого разрешения

Крестиком помечены станции с большим (>400) числом профилей

Распределение толщин пограничного слоя

Синие – профили с неустойчивой стратификацией. Красные – с устойчивой

Подвыборки

Название	Дополнительное условие	Кол-во	Толщина
подвыборки		профилей N	${H}_{j}$
Full	Нет	33806	671±516m
Deep*	$H_{j} > 1000m$	10409	1592±454m
Thin	$H_{j} < 500m$	15622	270±115m
Stable	$Ri(z) > 0.3$ для всех $z \in [0; H_j]$	3168	201±105m
Unstable	$Ri(z_0) < 0.2$ в некоторой $z_0 \in [0; H_j]$	29449	742±517m

*Подвыборка Deep является частью подвыборки Unstable

Результаты оптимизации в зависимости от относительной высоты S₁=z/H

Далее используем нормированные коэффициенты: $\tilde{k} = k \cdot \frac{H_j}{1000m}, \quad \tilde{\gamma} = \gamma \cdot \frac{H_j}{1000m}$

Быков Ф.Л. Гордин В.А.

Отдельно для 28 станций (более 400 профилей с каждой) a) the real part $\tilde{k}(S_1)$, b) the imaginary part $\tilde{\gamma}(S_1)$.

Жирные кривые – средние по всем профилям. Пунктир – станция в Южном полушарии.

Угол поворота ветра в зависимости от высоты

В случае $\kappa = H \tilde{\kappa} (z/H)$ угол поворота зависит только от толщины *H* и географической широты:

Примеры профилей ветра (устойчивая стратификация)

Красные точки – измеренные зондом значения

Синие линии согласно модели с комплексным $\tilde{\kappa}$

Зеленый пунктир согласно модели с $\tilde{k} > 0$

При устойчивой и неустойчивой стратификациях получаем сравнительно похожие зависимости. В устойчивом случае больших сдвигов не бывает, поэтому кривые короче.

$\tilde{\kappa}$ в зависимости от числа Ричардсона *Ri*, $S_3 = \arctan(Ri)$

 $1 - \tilde{k}(S_3), 2 - \tilde{\gamma}(S_3)$. Вертикальная линия (граница устойчивости) $Ri = Ri_c = 0.25$ При устойчивой стратификации мнимая часть κ много больше действительной: $10 < \gamma/k < 25$

Погрешность восстановления профиля ветра по граничным условиям

Отклонение модельного модуля скорости от фактического для модели с комплексным коэффициентом κ в сравнении с моделью с вещественным k>0: BIAS в ~4 раза меньше ABS в 1.5 раза меньше

Оценки качества моделей при различных вариантах параметризации

Ratio – во сколько раз увеличился средний коэффициент корреляции Λ при

добавлении параметра $\tilde{\gamma}$

	Коэффициент (ты)	K	$k > 0, \gamma = 0$	$ ilde{\kappa}$	$\tilde{k} > 0, \gamma = 0$	Ratio
Подвыборка	Параметр S	$100\% \cdot \Lambda$				
Full	Относительная высота S ₁	39,3%	12,2%	49,0%	14,0%	3,5
Deep		34,9%	7,6%	35,3%	7,8%	4,5
Thin		61,6%	17,4%	71,2%	21,3%	3,3
Stable		66,0%	9,8%	77,4%	10,9%	7,1
Unstable		39,6%	12,7%	48,8%	14,1%	3,5
Full	Сдвиг ветра S ₂	38,4%	12,7%	47,0%	15,4%	3,1
Deep		29,7%	8,6%	30,2%	8,8%	3,4
Thin		58,9%	17,9%	67,0%	22,4%	3,0
Stable		60,1%	11,1%	68,1%	12,4%	5,5
Unstable		39,9%	12,9%	47,4%	15,6%	3,0

Быков Ф.Л. Гордин В.А	лков Ф.Л. Гордин В.А. Комплексный коэффициент турбулентного обмена							
	Коэффициент (ты)	K	$k > 0, \gamma = 0$	$ ilde{\kappa}$	$\tilde{k} > 0, \gamma = 0$	Ratio		
Full	Число Ричардсона <i>Ri</i>	24,5%	11,8%	34,0%	12,8%	2,7		
Deep		29,1%	7,2%	29,7%	7,2%	4,1		
Thin		34,1%	16,4%	41,4%	19,8%	2,1		
Stable		32,6%	9,4%	38,9%	9,7%	4,0		
Unstable		28,6%	12,0%	35,2%	12,9%	2,7		
Full	Относительная высота S_1 и сдвиг ветра S_2	42,1%	13,2%	54,2%	15,7%	3,4		
Deep		35,8%	8,9%	36,3%	9,2%	4,0		
Thin		64,5%	18,6%	75,8%	23,0%	3,3		
Stable		66,5%	11,1%	78,0%	12,4%	6,3		
Unstable		42,7%	13,5%	54,2%	15,9%	3,4		
Full	Относительная высота S ₁ и число Ричардсона <i>Ri</i>	40,2%	12,8%	50,9%	14,0%	3,6		
Deep		35,1%	7,8%	35,5%	7,9%	4,5		
Thin		62,7%	18,2%	73,5%	21,7%	3,4		
Stable		66,1%	9,9%	77,4%	11,0%	7,1		
Unstable		41,1%	13,2%	50,7%	14,2%	3,6		

Выводы

Предложен эффективный метод оценки коэффициентов турбулентного обмена в зависимости от параметров атмосферы, сводящий задачу к задаче квадратичного программирования.

При добавлении в модель Аккерблома - Экмана дополнительного коэффициента турбулентного обмена ?:

- 1. Проще обеспечить существование и единственность решения
- 2. Корреляция с данными измерений увеличивается в <u>2 7 раз</u>
- 3. Второй дополнительный коэффициент *У* как правило **больше** (!) по величине чем первый коэффициент *k*

Работа была поддержана грантом № 20-04-021 в рамках Программы «Научный фонд Национального исследовательского университета «Высшая школа экономики» (НИУ ВШЭ)» 2020 - 2021 гг. и в рамках государственной поддержки ведущих университетов Российской Федерации "5-100".

Литература

- 1.Ekman V.W. On the influence of the Earth's rotation on ocean currents, Ark Mat Astron Fys, -1905 vol. 2(11) p. 1-53
- 2.Лойцянский Л.Г. Механика жидкости и газа // Дрофа 2003 840с.
- 3.Vickers D. Mahrt L. Evaluating formulations of stable boundary layer height // J Appl Meteorol – 2004 – vol. 43(11) – p. 1736–1749
- 4.Mellor G.L. Yamada T. Development of turbulence closure model for geophysical fluid problems // Rev Geophys Space Phys 1982 vol. 20 p. 851-875
- 5.Монин А.С., Яглом А.М. Статистическая гидромеханика. т.1,

Гидрометеоиздат, Л.: 1992, т.2, 1996, М.: «Наука».

- 6.Лайхтман Д.Л. (ред.) Динамическая метеорология. Гидрометеоиздат, Л.: 1976.
- 7.Bykov P.L., Gordin V.A. Big data and inverse problem for Ekman Akerblom model. Research Activities in Atmospheric and Oceanic Modeling, 2018.

Это, гады – физики на пари Раскрутили шарик наоборот

Спасибо за внимание!